Overall Statistics |
Total Orders 359 Average Win 1.75% Average Loss -0.49% Compounding Annual Return 16.702% Drawdown 12.000% Expectancy 1.230 Start Equity 100000 End Equity 282069.68 Net Profit 182.070% Sharpe Ratio 0.944 Sortino Ratio 0.889 Probabilistic Sharpe Ratio 67.065% Loss Rate 51% Win Rate 49% Profit-Loss Ratio 3.54 Alpha 0.069 Beta 0.285 Annual Standard Deviation 0.098 Annual Variance 0.01 Information Ratio 0.079 Tracking Error 0.145 Treynor Ratio 0.325 Total Fees $609.16 Estimated Strategy Capacity $1900000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X Portfolio Turnover 1.89% |
# region imports from AlgorithmImports import * import torch from scipy.optimize import minimize from ast import literal_eval from pathlib import Path from functools import partial from typing import List, Iterator, Optional, Dict from torch.utils.data import IterableDataset, get_worker_info from transformers import Trainer, TrainingArguments, set_seed from gluonts.dataset.pandas import PandasDataset from gluonts.itertools import Filter from chronos import ChronosConfig, ChronosPipeline from chronos.scripts.training.train import ChronosDataset, has_enough_observations, load_model from chronos.scripts.training import train from logging import getLogger, INFO # endregion class HuggingFaceFineTunedDemo(QCAlgorithm): """ This algorithm demonstrates how to fine-tune a HuggingFace model. It uses the "amazon/chronos-t5-tiny" model to forecast the future equity curves of the 5 most liquid assets in the market, then it uses the SciPy package to find the portfolio weights that will maximize the future Sharpe ratio of the portfolio. The model is retrained and the portfolio is rebalanced every 3 months. """ def initialize(self): self.set_start_date(2018, 1, 1) # self.set_start_date(2019, 1, 1) # self.set_end_date(2024, 4, 1) self.set_cash(100_000) self.settings.min_absolute_portfolio_target_percentage = 0 # Define the universe. spy = Symbol.create("SPY", SecurityType.EQUITY, Market.USA) self.universe_settings.schedule.on(self.date_rules.month_start(spy)) self.universe_settings.resolution = Resolution.DAILY self._universe = self.add_universe( self.universe.dollar_volume.top( self.get_parameter('universe_size', 10) ) ) # Define some trading parameters. self._lookback_period = timedelta( 365 * self.get_parameter('lookback_years', 1) ) self._prediction_length = 3*21 # Three months of trading days # Add risk management models self.AddRiskManagement(MaximumDrawdownPercentPerSecurity()) self.AddRiskManagement(TrailingStopRiskManagementModel()) # Schedule rebalances. self._last_rebalance = datetime.min self.schedule.on( self.date_rules.month_start(spy, 1), self.time_rules.midnight, self._trade ) # Add warm up so the algorithm trades on deployment. self.set_warm_up(timedelta(31)) # Define the model and some of its settings. self._device_map = "cuda" if torch.cuda.is_available() else "cpu" self._optimizer = 'adamw_torch_fused' if torch.cuda.is_available() else 'adamw_torch' self._model_name = "amazon/chronos-t5-tiny" self._model_path = self.object_store.get_file_path( f"llm/fine-tune/{self._model_name.replace('/', '-')}/" ) def on_warmup_finished(self): # Trade right after warm up is done. self.log(f"{self.time} - warm up done") self._trade() def _sharpe_ratio( self, weights, returns, risk_free_rate, trading_days_per_year=252): # Define how to calculate the Sharpe ratio so we can use # it to optimize the portfolio weights. # Calculate the annualized returns and covariance matrix. mean_returns = returns.mean() * trading_days_per_year cov_matrix = returns.cov() * trading_days_per_year # Calculate the Sharpe ratio. portfolio_return = np.sum(mean_returns * weights) portfolio_std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) sharpe_ratio = (portfolio_return - risk_free_rate) / portfolio_std # Return negative Sharpe ratio because we minimize this # function in optimization. return -sharpe_ratio def _optimize_portfolio(self, equity_curves): returns = equity_curves.pct_change().dropna() num_assets = returns.shape[1] initial_guess = num_assets * [1. / num_assets,] # Find portfolio weights that mazimize the forward Sharpe # ratio. result = minimize( self._sharpe_ratio, initial_guess, args=( returns, self.risk_free_interest_rate_model.get_interest_rate(self.time) ), method='SLSQP', bounds=tuple((0, 1) for _ in range(num_assets)), constraints=( {'type': 'eq', 'fun': lambda weights: np.sum(weights) - 1} ) ) return result.x def _trade(self): # Don't rebalance during warm-up. if self.is_warming_up: return # Only rebalance on a quarterly basis. if self.time - self._last_rebalance < timedelta(80): return self._last_rebalance = self.time symbols = list(self._universe.selected) # Get historical equity curves. history = self.history(symbols, self._lookback_period)['close'].unstack(0) # Gather the training data. training_data_by_symbol = {} for symbol in symbols: df = history[[symbol]].dropna() if df.shape[0] < 10: # Skip this asset if there is very little data continue adjusted_df = df.reset_index()[['time', symbol]] adjusted_df = adjusted_df.rename(columns={str(symbol.id): 'target'}) adjusted_df['time'] = pd.to_datetime(adjusted_df['time']) adjusted_df.set_index('time', inplace=True) adjusted_df.index = adjusted_df.index.normalize() # Remove time component to align with daily frequency adjusted_df = adjusted_df.resample('D').asfreq() training_data_by_symbol[symbol] = adjusted_df tradable_symbols = list(training_data_by_symbol.keys()) # Fine-tune the model. output_dir_path = self._train_chronos( list(training_data_by_symbol.values()), context_length=int(252/2), # 6 months prediction_length=self._prediction_length, optim=self._optimizer, model_id=self._model_name, output_dir=self._model_path, learning_rate=1e-5, # Requires Ampere GPUs (e.g., A100) tf32=False, max_steps=3 ) # Load the fine-tuned model. pipeline = ChronosPipeline.from_pretrained( output_dir_path, device_map=self._device_map, torch_dtype=torch.bfloat16, ) # Forecast the future equity curves. all_forecasts = pipeline.predict( [ torch.tensor(history[symbol].dropna()) for symbol in tradable_symbols ], self._prediction_length ) # Take the median forecast for each asset. forecasts_df = pd.DataFrame( { symbol: np.quantile( all_forecasts[i].numpy(), 0.5, axis=0 # 0.5 = median ) for i, symbol in enumerate(tradable_symbols) } ) # Find the weights that maximize the forward Sharpe # ratio of the portfolio. optimal_weights = self._optimize_portfolio(forecasts_df) # # Rebalance the portfolio. # self.set_holdings( # [ # PortfolioTarget(symbol, optimal_weights[i]) # for i, symbol in enumerate(tradable_symbols) # ], # True # ) # Rebalance the portfolio with error handling for missing symbols. self.set_holdings( [ PortfolioTarget(symbol, optimal_weights[i]) for i, symbol in enumerate(tradable_symbols) if self.Securities.ContainsKey(symbol) ], True ) # Log a message for symbols that are not found. for symbol in tradable_symbols: if not self.Securities.ContainsKey(symbol): self.debug(f"Symbol {symbol} not found in the securities list. Skipping.") def _train_chronos( self, training_data, probability: Optional[str] = None, context_length: int = 512, prediction_length: int = 64, min_past: int = 64, max_steps: int = 200_000, save_steps: int = 50_000, log_steps: int = 500, per_device_train_batch_size: int = 32, learning_rate: float = 1e-3, optim: str = "adamw_torch_fused", shuffle_buffer_length: int = 100, gradient_accumulation_steps: int = 2, model_id: str = "google/t5-efficient-tiny", model_type: str = "seq2seq", random_init: bool = False, tie_embeddings: bool = False, output_dir: str = "./output/", tf32: bool = True, torch_compile: bool = True, tokenizer_class: str = "MeanScaleUniformBins", tokenizer_kwargs: str = "{'low_limit': -15.0, 'high_limit': 15.0}", n_tokens: int = 4096, n_special_tokens: int = 2, pad_token_id: int = 0, eos_token_id: int = 1, use_eos_token: bool = True, lr_scheduler_type: str = "linear", warmup_ratio: float = 0.0, dataloader_num_workers: int = 1, max_missing_prop: float = 0.9, num_samples: int = 20, temperature: float = 1.0, top_k: int = 50, top_p: float = 1.0): # Set up logging for the train object. train.logger = getLogger() train.logger.setLevel(INFO) # Ensure output_dir is a Path object. output_dir = Path(output_dir) # Convert probability from string to a list, or set default if # None. if isinstance(probability, str): probability = literal_eval(probability) elif probability is None: probability = [1.0 / len(training_data)] * len(training_data) # Convert tokenizer_kwargs from string to a dictionary. if isinstance(tokenizer_kwargs, str): tokenizer_kwargs = literal_eval(tokenizer_kwargs) # Enable reproducibility. set_seed(1, True) # Create datasets for training, filtered by criteria. train_datasets = [ Filter( partial( has_enough_observations, min_length=min_past + prediction_length, max_missing_prop=max_missing_prop, ), PandasDataset(data_frame, freq="D"), ) for data_frame in training_data ] # Load the model with the specified configuration. model = load_model( model_id=model_id, model_type=model_type, vocab_size=n_tokens, random_init=random_init, tie_embeddings=tie_embeddings, pad_token_id=pad_token_id, eos_token_id=eos_token_id, ) # Define the configuration for the Chronos # tokenizer and other settings. chronos_config = ChronosConfig( tokenizer_class=tokenizer_class, tokenizer_kwargs=tokenizer_kwargs, n_tokens=n_tokens, n_special_tokens=n_special_tokens, pad_token_id=pad_token_id, eos_token_id=eos_token_id, use_eos_token=use_eos_token, model_type=model_type, context_length=context_length, prediction_length=prediction_length, num_samples=num_samples, temperature=temperature, top_k=top_k, top_p=top_p, ) # Add extra items to model config so that # it's saved in the ckpt. model.config.chronos_config = chronos_config.__dict__ # Create a shuffled training dataset with the # specified parameters. shuffled_train_dataset = ChronosDataset( datasets=train_datasets, probabilities=probability, tokenizer=chronos_config.create_tokenizer(), context_length=context_length, prediction_length=prediction_length, min_past=min_past, mode="training", ).shuffle(shuffle_buffer_length=shuffle_buffer_length) # Define the training arguments. training_args = TrainingArguments( output_dir=str(output_dir), per_device_train_batch_size=per_device_train_batch_size, learning_rate=learning_rate, lr_scheduler_type=lr_scheduler_type, warmup_ratio=warmup_ratio, optim=optim, logging_dir=str(output_dir / "train-logs"), logging_strategy="steps", logging_steps=log_steps, save_strategy="steps", save_steps=save_steps, report_to=["tensorboard"], max_steps=max_steps, gradient_accumulation_steps=gradient_accumulation_steps, dataloader_num_workers=dataloader_num_workers, tf32=tf32, # remove this if not using Ampere GPUs (e.g., A100) torch_compile=torch_compile, ddp_find_unused_parameters=False, remove_unused_columns=False, ) # Create a Trainer instance for training the model. trainer = Trainer( model=model, args=training_args, train_dataset=shuffled_train_dataset, ) # Start the training process. trainer.train() # Save the trained model to the output directory. model.save_pretrained(output_dir) # Return the path to the output directory. return output_dir