Overall Statistics |
Total Trades 544 Average Win 2.68% Average Loss -1.06% Compounding Annual Return 41.272% Drawdown 36.100% Expectancy 1.573 Net Profit 9415.429% Sharpe Ratio 1.691 Probabilistic Sharpe Ratio 96.069% Loss Rate 27% Win Rate 73% Profit-Loss Ratio 2.53 Alpha 0 Beta 0 Annual Standard Deviation 0.213 Annual Variance 0.045 Information Ratio 1.691 Tracking Error 0.213 Treynor Ratio 0 Total Fees $11030.32 Estimated Strategy Capacity $50000.00 |
''' 12,321.84 % PSR 98.875% Intersection of ROC comparison using OUT_DAY approach by Vladimir v1.3 (with dynamic selector for fundamental factors and momentum) inspired by Peter Guenther, Tentor Testivis, Dan Whitnable, Thomas Chang, Miko M, Leandro Maia Leandro Maia setup modified by Vladimir https://www.quantconnect.com/forum/discussion/9632/amazing-returns-superior-stock-selection-strategy-superior-in-amp-out-strategy/p2/comment-29437 Changes: STK_MOM is used not only for momenum, but for average dollar volume ''' from QuantConnect.Data.UniverseSelection import * import numpy as np import pandas as pd import operator import collections # -------------------------------------------------------------------------------------------------------- BONDS = ['TLT']; SAFE_BONDS = ['SHY']; VOLA = 126; BASE_RET = 85; STK_MOM = 126; N_COARSE = 100; N_FACTOR = 20; N_MOM = 5; LEV = 1.00; VOLA_FCTR = 0.6; # -------------------------------------------------------------------------------------------------------- class Fundamental_Factors_Momentum_ROC_Comparison_OUT_DAY(QCAlgorithm): def Initialize(self): # Dates and cash below changed for PROD self.SetStartDate(2008, 1, 1) #self.SetEndDate(2009, 12, 13) self.SetEndDate(2021, 3, 5) #self.SetEndDate(2021, 1, 13) #self.SetStartDate(2013, 3, 1) #self.SetEndDate(2013, 6, 13) self.InitCash = 100000 self.SetCash(self.InitCash) self.MKT = self.AddEquity("SPY", Resolution.Hour).Symbol self.mkt = [] self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) res = Resolution.Hour self.BONDS = [self.AddEquity(ticker, res).Symbol for ticker in BONDS] self.SAFE_BONDS = [self.AddEquity(ticker, res).Symbol for ticker in SAFE_BONDS] self.INI_WAIT_DAYS = 15 self.wait_days = self.INI_WAIT_DAYS self.GLD = self.AddEquity('GLD', res).Symbol self.SLV = self.AddEquity('SLV', res).Symbol self.XLU = self.AddEquity('XLU', res).Symbol self.XLI = self.AddEquity('XLI', res).Symbol self.UUP = self.AddEquity('UUP', res).Symbol self.DBB = self.AddEquity('DBB', res).Symbol self.pairs = [self.GLD, self.SLV, self.XLU, self.XLI, self.UUP, self.DBB] self.bull = 1 self.bull_prior = 0 self.count = 0 self.outday = (-self.INI_WAIT_DAYS+1) self.SetWarmUp(timedelta(350)) self.UniverseSettings.Resolution = res self.AddUniverse(self.CoarseFilter, self.FineFilter) self.data = {} self.RebalanceFreq = 60 self.UpdateFineFilter = 0 self.symbols = None self.RebalanceCount = 0 self.wt = {} # For Avg Dollar Volume history self.averages = { } self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 60), self.daily_check) # change to 60 minutes back symbols = [self.MKT] + self.pairs for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.history = self.History(symbols, VOLA, Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() self.correlationModel = UncorrelatedUniverseSelectionModel(windowLength = 6, historyLength = 9) def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-VOLA:] def derive_vola_waitdays(self): sigma = VOLA_FCTR * np.log1p(self.history[[self.MKT]].pct_change()).std() * np.sqrt(252) wait_days = int(sigma * BASE_RET) period = int((1.0 - sigma) * BASE_RET) return wait_days, period def CoarseFilter(self, coarse): if not (((self.count-self.RebalanceCount) == self.RebalanceFreq) or (self.count == self.outday + self.wait_days - 1)): self.UpdateFineFilter = 0 return Universe.Unchanged self.UpdateFineFilter = 1 self.correlationModel.SelectCoarse(self, coarse) selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)]#[:10] filterByDollarMomentum = True if filterByDollarMomentum: #https://www.quantconnect.com/terminal/index.php?key=processCache&request=embedded_backtest_9b39116ede741fb39e3eee940b4da720.html addedSymbols = [symbol.Symbol for symbol in selected] for cf in selected: symbol = cf.Symbol if cf.Symbol not in self.averages: # First parameter - 21 doesn't seem to make any difference as of Feb 27, 2021 self.averages[cf.Symbol] = SymbolDataVolume(cf.Symbol, 21, 5) # Updates the SymbolData object with current EOD price - we don't need history for 5 days, result is the same avg = self.averages[cf.Symbol] avg.update(cf.EndTime, cf.AdjustedPrice, cf.DollarVolume) values = list(filter(lambda sd: sd.smaw.Current.Value > 0, self.averages.values())) values_str = [str(x.symbol) for x in values] values.sort(key=lambda x: x.smaw.Current.Value, reverse=True) # we need to return only the symbol objects return [ x.symbol for x in values[:N_COARSE] ] else: filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True) return [x.Symbol for x in filtered[:N_COARSE]] def FineFilter(self, fundamental): if self.UpdateFineFilter == 0: return Universe.Unchanged use_custom_fine = False filtered_fundamental = [x for x in fundamental if (x.ValuationRatios.EVToEBITDA > 0) and (x.EarningReports.BasicAverageShares.ThreeMonths > 0) and float(x.EarningReports.BasicAverageShares.ThreeMonths) * x.Price > 2e9 and x.SecurityReference.IsPrimaryShare and x.SecurityReference.SecurityType == "ST00000001" and x.SecurityReference.IsDepositaryReceipt == 0 and x.CompanyReference.IsLimitedPartnership == 0] # Doesn't make a difference # x.FinancialStatements.CashFlowStatement.CommonStockPayments.TwelveMonths >= 0 or <= 0 # NetCommonStockIssuance.TwelveMonths <= 0 # NetCommonStockIssuance.ThreeMonths <= 0 filtered_fundamental = [x for x in filtered_fundamental if x.AssetClassification.MorningstarIndustryGroupCode != MorningstarIndustryGroupCode.DrugManufacturers] #filtered_fundamental = [x for x in filtered_fundamental if x.AssetClassification.MorningstarIndustryCode != MorningstarIndustryCode.IntegratedFreightAndLogistics] if use_custom_fine: # https://www.quantconnect.com/docs/data-library/fundamentals#Fundamentals-Reference-Tables # sorting: reverse=False means "longing highest", reverse=True means "longing lowest" s1 = sorted(filtered_fundamental, key=lambda x: x.ValuationRatios.EVToEBITDA, reverse=False) # <- added s2 = sorted(filtered_fundamental, key=lambda x: x.ValuationRatios.PricetoEBITDA, reverse=False) # <- added s3 = sorted(filtered_fundamental, key=lambda x: (x.ValuationRatios.PERatio if x.ValuationRatios.PERatio > 0.5 else 1000), reverse=True) # <- added dict = {} for i, elem in enumerate(s1): # <- added i1 = i # <- added i2 = s2.index(elem) # <- added i3 = s3.index(elem) # <- added score = sum([i1 * 0.6, i2 * 0.1, i3 * 0.3]) # <- added dict[elem] = score # <- added top = sorted(dict.items(), key = lambda x: x[1], reverse=True)[:N_FACTOR] # <- changed self.symbols = [x[0].Symbol for x in top] else: top = sorted(filtered_fundamental, key = lambda x: x.ValuationRatios.EVToEBITDA, reverse=True)[:N_FACTOR] self.symbols = [x.Symbol for x in top] self.UpdateFineFilter = 0 self.RebalanceCount = self.count return self.symbols def OnSecuritiesChanged(self, changes): addedSymbols = [] for security in changes.AddedSecurities: addedSymbols.append(security.Symbol) if security.Symbol not in self.data: self.data[security.Symbol] = SymbolData(security.Symbol, STK_MOM, self) if len(addedSymbols) > 0: history = self.History(addedSymbols, 1 + STK_MOM, Resolution.Daily).loc[addedSymbols] for symbol in addedSymbols: try: self.data[symbol].Warmup(history.loc[symbol]) except: self.Debug(str(symbol)) continue def daily_check(self): self.wait_days, period = self.derive_vola_waitdays() r = self.history.pct_change(period).iloc[-1] bear = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP])) if bear: self.bull = False self.outday = self.count if (self.count >= self.outday + self.wait_days): self.bull = True self.wt_stk = LEV if self.bull else 0 self.wt_bnd = 0 if self.bull else LEV if bear: self.trade_out() if (self.bull and not self.bull_prior) or (self.bull and (self.count==self.RebalanceCount)): self.trade_in() self.bull_prior = self.bull self.count += 1 def trade_out(self): try: sec = self.BONDS[0] correlationWithMKT_arr = self.correlationModel.cache[sec].correlation['A'] correlationWithMKT = sum(correlationWithMKT_arr)/len(correlationWithMKT_arr) except: correlationWithMKT = 0 bonds = self.BONDS if correlationWithMKT < -0.9: bonds = self.SAFE_BONDS #sec = self.BONDS[0] #correlationWithMKT = self.correlationModel.cache[sec].correlation['A'][0] #self.Debug('{} {} Will switch to safe bonds, correlation with SPY: {}'.format(self.Time.strftime("%m/%d/%Y %A %H:%M:%S"), str(sec), correlationWithMKT)) for sec in bonds: self.wt[sec] = self.wt_bnd/len(bonds) for sec in self.Portfolio.Keys: if sec not in bonds: self.wt[sec] = 0 for sec, weight in self.wt.items(): if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) for sec, weight in self.wt.items(): if weight != 0: self.SetHoldings(sec, weight) def trade_out_old(self): for sec in self.BONDS: self.wt[sec] = self.wt_bnd/len(self.BONDS) for sec in self.Portfolio.Keys: if sec not in self.BONDS: self.wt[sec] = 0 for sec, weight in self.wt.items(): if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) for sec, weight in self.wt.items(): if weight != 0: self.SetHoldings(sec, weight) def trade_in(self): if self.symbols is None: return output = self.calc_return(self.symbols) stocks = output.iloc[:N_MOM].index for sec in self.Portfolio.Keys: if sec not in stocks: self.wt[sec] = 0 for sec in stocks: self.wt[sec] = self.wt_stk/N_MOM for sec, weight in self.wt.items(): self.SetHoldings(sec, weight) def calc_return(self, stocks): ret = {} for symbol in stocks: try: ret[symbol] = self.data[symbol].Roc.Current.Value except: self.Debug(str(symbol)) continue df_ret = pd.DataFrame.from_dict(ret, orient='index') df_ret.columns = ['return'] sort_return = df_ret.sort_values(by = ['return'], ascending = False) return sort_return def OnEndOfDay(self): mkt_price = self.Securities[self.MKT].Close self.mkt.append(mkt_price) mkt_perf = self.InitCash * self.mkt[-1] / self.mkt[0] self.Plot('Strategy Equity', self.MKT, mkt_perf) account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue self.Plot('Holdings', 'leverage', round(account_leverage, 2)) self.Plot('Holdings', 'Target Leverage', LEV) class SymbolData(object): def __init__(self, symbol, roc, algorithm): self.Symbol = symbol self.Roc = RateOfChange(roc) self.algorithm = algorithm self.consolidator = algorithm.ResolveConsolidator(symbol, Resolution.Daily) algorithm.RegisterIndicator(symbol, self.Roc, self.consolidator) def Warmup(self, history): for index, row in history.iterrows(): self.Roc.Update(index, row['close']) class SelectionData(): def __init__(self, history): self.avgDollarVolume = SimpleMovingAverage(STK_MOM) for index, row in history.iterrows(): self.avgDollarVolume.Update(index, row['close'] * row['volume']) # for bar in history.itertuples(): # timeIndex = 1 # self.avgDollarVolume.Update(bar.Index[timeIndex], bar.close * bar.volume) def is_ready(self): return self.avgDollarVolume.IsReady def update(self, time, price, volume): self.avgDollarVolume.Update(time, price * volume) class SymbolDataVolume(object): def __init__(self, symbol, period, periodw): self.symbol = symbol #self.tolerance = 1.01 self.tolerance = 0.95 self.fast = ExponentialMovingAverage(10) self.slow = ExponentialMovingAverage(21) self.is_uptrend = False self.scale = 0 self.volume = 0 self.volume_ratio = 0 self.volume_ratiow = 0 self.sma = SimpleMovingAverage(period) self.smaw = SimpleMovingAverage(periodw) def update(self, time, value, volume): self.volume = volume if self.smaw.Update(time, volume): # get ratio of this volume bar vs previous 10 before it. if self.smaw.Current.Value != 0: self.volume_ratiow = volume / self.smaw.Current.Value if self.sma.Update(time, volume): # get ratio of this volume bar vs previous 10 before it. if self.sma.Current.Value != 0: self.volume_ratio = self.smaw.Current.Value / self.sma.Current.Value if self.fast.Update(time, value) and self.slow.Update(time, value): fast = self.fast.Current.Value slow = self.slow.Current.Value #self.is_uptrend = fast > slow * self.tolerance self.is_uptrend = (fast > (slow * self.tolerance)) and (value > (fast * self.tolerance)) if self.is_uptrend: self.scale = (fast - slow) / ((fast + slow) / 2.0) class UncorrelatedUniverseSelectionModel: '''This universe selection model picks stocks that currently have their correlation to a benchmark deviated from the mean.''' def __init__(self, benchmark = Symbol.Create("SPY", SecurityType.Equity, Market.USA), tlt = Symbol.Create("TLT", SecurityType.Equity, Market.USA), windowLength = 5, historyLength = 25, threshold = 0.5): '''Initializes a new default instance of the OnTheMoveUniverseSelectionModel Args: benchmark: Symbol of the benchmark tlt: TLT windowLength: Rolling window length period for correlation calculation historyLength: History length period threshold: Threadhold for the minimum mean correlation between security and benchmark''' self.benchmark = benchmark self.tlt = tlt self.windowLength = windowLength self.historyLength = historyLength self.threshold = threshold self.cache = dict() self.symbol = list() def SelectCoarse(self, algorithm, coarse): '''Select stocks with highest Z-Score with fundamental data and positive previous-day price and volume''' # Verify whether the benchmark is present in the Coarse Fundamental benchmark = next((x for x in coarse if x.Symbol == self.benchmark), None) if benchmark is None: return self.symbol # Get the symbols with the highest dollar volume coarse = sorted([x for x in coarse if x.Symbol == self.tlt], key = lambda x: x.DollarVolume, reverse=True) newSymbols = list() for cf in coarse + [benchmark]: symbol = cf.Symbol data = self.cache.setdefault(symbol, self.SymbolData(self, symbol)) data.Update(cf.EndTime, cf.AdjustedPrice) if not data.IsReady: newSymbols.append(symbol) # Warm up the dictionary objects of selected symbols and benchmark that do not have enough data if len(newSymbols) > 1: history = algorithm.History(newSymbols, self.historyLength, Resolution.Daily) if not history.empty: history = history.close.unstack(level=0) for symbol in newSymbols: self.cache[symbol].Warmup(history) # Create a new dictionary with the zScore zScore = dict() benchmark = self.cache[self.benchmark].GetReturns() for cf in coarse: symbol = cf.Symbol value = self.cache[symbol].CalculateZScore(benchmark) if value > 0: zScore[symbol] = value # Sort the zScore dictionary by value if len(zScore) > 0: sorted_zScore = sorted(zScore.items(), key=lambda kvp: kvp[1], reverse=True) zScore = dict(sorted_zScor) # Return the symbols self.symbols = list(zScore.keys()) return self.symbols class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, model, symbol): self.symbol = symbol self.windowLength = model.windowLength self.historyLength = model.historyLength self.threshold = model.threshold self.history = RollingWindow[IndicatorDataPoint](self.historyLength) self.correlation = None def Warmup(self, history): '''Save the historical data that will be used to compute the correlation''' symbol = str(self.symbol) if symbol not in history: return # Save the last point before reset last = self.history[0] self.history.Reset() # Uptade window with historical data for time, value in history[symbol].iteritems(): self.Update(time, value) # Re-add the last point if necessary if last.EndTime > time: self.Update(last.EndTime, last.Value) def Update(self, time, value): '''Update the historical data''' self.history.Add(IndicatorDataPoint(self.symbol, time, value)) def CalculateZScore(self, benchmark): '''Computes the ZScore''' # Not enough data to compute zScore if not self.IsReady: return 0 returns = pd.DataFrame.from_dict({"A": self.GetReturns(), "B": benchmark}) if self.correlation is None: # Calculate stdev(correlation) using rolling window for all history correlation = returns.rolling(self.windowLength, min_periods = self.windowLength).corr() self.correlation = correlation["B"].dropna().unstack() else: last_correlation = returns.tail(self.windowLength).corr()["B"] self.correlation = self.correlation.append(last_correlation).tail(self.historyLength) # Calculate the mean of correlation and discard low mean correlation mean = self.correlation.mean() if mean.empty or mean[0] < self.threshold: return 0 # Calculate the standard deviation of correlation std = self.correlation.std() # Current correlation current = self.correlation.tail(1).unstack() # Calculate absolute value of Z-Score for stocks in the Coarse Universe. return abs(current[0] - mean[0]) / std[0] def GetReturns(self): '''Get the returns from the rolling window dictionary''' historyDict = {x.EndTime: x.Value for x in self.history} return pd.Series(historyDict).sort_index().pct_change().dropna() @property def IsReady(self): return self.history.IsReady