Overall Statistics |
Total Trades 165 Average Win 2.12% Average Loss -1.59% Compounding Annual Return 7.236% Drawdown 11.500% Expectancy 0.239 Net Profit 33.819% Sharpe Ratio 0.661 Probabilistic Sharpe Ratio 20.616% Loss Rate 47% Win Rate 53% Profit-Loss Ratio 1.34 Alpha 0.065 Beta 0.003 Annual Standard Deviation 0.099 Annual Variance 0.01 Information Ratio -0.365 Tracking Error 0.154 Treynor Ratio 21.172 Total Fees $4725.26 Estimated Strategy Capacity $3700000.00 Lowest Capacity Asset TSLA UNU3P8Y3WFAD |
from nltk.sentiment import SentimentIntensityAnalyzer class MyAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2012, 11, 1) self.SetEndDate(2017, 1, 1) self.SetCash(100000) self.tsla = self.AddEquity("TSLA", Resolution.Minute).Symbol self.musk = self.AddData(MuskTweet, "MUSKTWTS", Resolution.Minute).Symbol self.Schedule.On(self.DateRules.EveryDay(self.tsla), self.TimeRules.BeforeMarketClose(self.tsla, 15), self.ExitPositions) def OnData(self, data): if self.musk in data: score = data[self.musk].Value content = data[self.musk].Tweet if score > 0.5: self.SetHoldings(self.tsla, 1) elif score < -0.5: self.SetHoldings(self.tsla, -1) if abs(score) > 0.5: self.Log("Score: " + str(score) + ", Tweet: " + content) def ExitPositions(self): self.Liquidate() class MuskTweet(PythonData): sia = SentimentIntensityAnalyzer() def GetSource(self, config, date, isLive): source = "https://www.dropbox.com/s/ovnsrgg1fou1y0r/MuskTweetsPreProcessed.csv?dl=1" return SubscriptionDataSource(source, SubscriptionTransportMedium.RemoteFile); def Reader(self, config, line, date, isLive): if not (line.strip() and line[0].isdigit()): return None data = line.split(',') tweet = MuskTweet() try: tweet.Symbol = config.Symbol tweet.Time = datetime.strptime(data[0], '%Y-%m-%d %H:%M:%S') + timedelta(minutes=1) content = data[1].lower() if "tsla" in content or "tesla" in content: tweet.Value = self.sia.polarity_scores(content)["compound"] else: tweet.Value = 0 tweet["Tweet"] = str(content) except ValueError: return None return tweet