Overall Statistics |
Total Trades 28 Average Win 193.38% Average Loss -4.79% Compounding Annual Return 139.691% Drawdown 42.700% Expectancy 7.865 Net Profit 440.534% Sharpe Ratio 1.571 Loss Rate 79% Win Rate 21% Profit-Loss Ratio 40.37 Alpha 0.807 Beta -0.065 Annual Standard Deviation 0.509 Annual Variance 0.259 Information Ratio 1.34 Tracking Error 0.52 Treynor Ratio -12.387 Total Fees $341.86 |
# WarmCryptoCrossover v0.02 (Py) from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Data import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from datetime import datetime import decimal as d import numpy as np class WarmupAlgorithm(QCAlgorithm): def Initialize(self): # define email address for buy/sell notifications # please change prior to Live deploy self.email_address = 'test@test.com' self.SetStartDate(2017,4,1) #Set Start Date self.SetEndDate(2017,11,5) #Set End Date self.SetCash(1000) #Set Strategy Cash # define crypto we want to trade on # ETHUSD or LTCUSD or BTCUSD self.target_crypto = "ETHUSD" # Set brokerage to GDAX for cryptos self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash) # Set crypto and time resolution self.AddCrypto(self.target_crypto, Resolution.Hour) # Define windows in days for EMA # 168 hours in a week, 1440 minutes in a day fast_period = 16 slow_period = (168 * 2) medium_period = ((slow_period - fast_period) / 2) + fast_period # Define a fast and slow exponential moving average self.fast = self.EMA(self.target_crypto, fast_period) self.medium = self.EMA(self.target_crypto, medium_period) self.slow = self.EMA(self.target_crypto, slow_period) # Define average direction self.adxr = self.ADXR(self.target_crypto, medium_period) # Request warmup data self.SetWarmup(slow_period) # Plot EMAs self.PlotIndicator(self.target_crypto,self.fast,self.medium,self.slow) self.first = True def OnData(self, data): if self.first and not self.IsWarmingUp: self.first = False self.Log("Fast: {0}".format(self.fast.Samples)) self.Log("Medium: {0}".format(self.medium.Samples)) self.Log("Slow: {0}".format(self.slow.Samples)) self.Log("ADXR >> {0}".format(self.adxr.Samples)) # Determine holdings (# of units held) and price of unit holdings = self.Portfolio[self.target_crypto].Quantity price = self.Securities[self.target_crypto].Price # define a small tolerance on our checks to avoid bouncing if holdings > 0: tolerance = 0.0001 else: tolerance = 0.0001 self.Log("ADXR >> {0}".format(self.adxr)) # we only want to go long if we're currently short or flat if holdings <= 0: # if the fast is greater than the slow, we'll go long if self.fast.Current.Value > self.slow.Current.Value * d.Decimal(1 + tolerance): self.SetHoldings(self.target_crypto, 1) message = "BUY >> {0} at {1}/unit".format(self.target_crypto,price) self.Log(message) # Email notification of buy (only in Live environment) #self.Notify(self.email_address, 'QuantConnect Algo Buy', message) # we only want to liquidate if we're currently long # if the fast is less than the slow we'll liquidate our long if holdings > 0: if self.fast.Current.Value < self.slow.Current.Value * d.Decimal(1 - tolerance): self.SetHoldings(self.target_crypto, 0) message = "Sell >> {0} at {1}/unit".format(self.target_crypto,price) self.Log(message) # Email notification of sell (only in Live environment) #self.Notify(self.email_address, 'QuantConnect Algo Sell', message)