Overall Statistics |
Total Trades 110 Average Win 1.29% Average Loss -0.53% Compounding Annual Return 9.621% Drawdown 30.200% Expectancy 2.109 Net Profit 248.494% Sharpe Ratio 0.981 Probabilistic Sharpe Ratio 40.557% Loss Rate 9% Win Rate 91% Profit-Loss Ratio 2.43 Alpha 0.056 Beta 0.432 Annual Standard Deviation 0.104 Annual Variance 0.011 Information Ratio -0.046 Tracking Error 0.129 Treynor Ratio 0.237 Total Fees $281.00 |
def UpdateBenchmarkValue(self): ''' Simulate buy and hold the Benchmark ''' if self.initBenchmarkPrice == 0: self.initBenchmarkCash = self.Portfolio.Cash self.initBenchmarkPrice = self.Benchmark.Evaluate(self.Time) self.benchmarkValue = self.initBenchmarkCash else: currentBenchmarkPrice = self.Benchmark.Evaluate(self.Time) self.benchmarkValue = (currentBenchmarkPrice / self.initBenchmarkPrice) * self.initBenchmarkCash def UpdatePlots(self): # simulate buy and hold the benchmark and plot its daily value UpdateBenchmarkValue(self) self.Plot('Strategy Equity', self.benchmarkTicker, self.benchmarkValue) # plot portfolio exposures portfolioValue = self.Portfolio.TotalPortfolioValue equityExposure = (self.Portfolio[self.equitySymbol].HoldingsValue / portfolioValue) * 100 safeExposure = (self.Portfolio[self.safeSymbol].HoldingsValue / portfolioValue) * 100 self.Plot('Portfolio Exposures', 'Equity Exposure', equityExposure) self.Plot('Portfolio Exposures', 'Safe Exposure', safeExposure)
from HelperFunctions import * from System.Drawing import Color import pandas as pd class TrendFollowingSystemTemplateAlgorithm(QCAlgorithm): ''' Implementation of the Pacer Trendpilot Strategy ''' def Initialize(self): ''' Initialization at beginning of backtest ''' ### USER-DEFINED INPUTS --------------------------------------------------------------------------------------------------- self.SetStartDate(2007, 1, 1) self.SetEndDate(2020, 7, 31) self.SetCash(1000000) # TICKERS ---------------------------------------------------------------------------------- self.equityTicker = 'SPY' # equity like asset self.safeTicker = 'TLT' # cash/bond like asset self.benchmarkTicker = 'SPY' # select a benchmark # ALLOCATIONS ------------------------------------------------------------------ # allocations = [equityTicker allocation, safeTicker allocation] self.allocations = [0.6, 0.4] # rebalancing (options are monthly/quarterly) self.rebalancingPeriod = 'quarterly' ### ----------------------------------------------------------------------------------------------------------------------- # add benchmark self.SetBenchmark(self.benchmarkTicker) # add data self.equitySymbol = self.AddEquity(self.equityTicker, Resolution.Hour).Symbol self.safeSymbol = self.AddEquity(self.safeTicker, Resolution.Hour).Symbol self.initBenchmarkPrice = 0 self.previousPeriod = 0 # initialize plots portfolioExposuresPlot = Chart('Portfolio Exposures') portfolioExposuresPlot.AddSeries(Series('Equity Exposure', SeriesType.Line, '%', Color.Green)) portfolioExposuresPlot.AddSeries(Series('Safe Exposure', SeriesType.Line, '%', Color.Red)) self.AddChart(portfolioExposuresPlot) def OnData(self, data): ''' Event triggering every time there is new data ''' if self.Time.hour != 10: return # update plots UpdatePlots(self) # rebalancing if self.rebalancingPeriod == 'monthly': currentPeriod = self.Time.month elif self.rebalancingPeriod == 'quarterly': currentPeriod = pd.Timestamp(self.Time.date()).quarter else: raise ValueError('self.rebalancingPeriod must be either monthly or quarterly') if currentPeriod != self.previousPeriod: if (data.ContainsKey(self.equitySymbol) and data.ContainsKey(self.safeSymbol) and self.ActiveSecurities[self.equitySymbol].Price > 0 and self.ActiveSecurities[self.safeSymbol].Price > 0): # set holdings allocationEquity = self.allocations[0] allocationSafe = self.allocations[1] self.SetHoldings([PortfolioTarget(self.equitySymbol, allocationEquity), PortfolioTarget(self.safeSymbol, allocationSafe)]) self.previousPeriod = currentPeriod