Overall Statistics |
Total Trades 115 Average Win 0.36% Average Loss -0.45% Compounding Annual Return 7.682% Drawdown 18.500% Expectancy -0.199 Net Profit 7.682% Sharpe Ratio 0.429 Probabilistic Sharpe Ratio 25.972% Loss Rate 55% Win Rate 45% Profit-Loss Ratio 0.79 Alpha 0.08 Beta 0.016 Annual Standard Deviation 0.194 Annual Variance 0.038 Information Ratio -0.359 Tracking Error 0.259 Treynor Ratio 5.09 Total Fees $168.53 |
# from System import * # from clr import AddReference # AddReference("QuantConnect.Algorithm") # from QuantConnect import * # from QuantConnect.Orders import * # from QuantConnect.Algorithm import * # from QuantConnect.Algorithm.Framework import * # from QuantConnect.Algorithm.Framework.Execution import * # from QuantConnect.Algorithm.Framework.Portfolio import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel # from QuantConnect.Algorithm.Framework.Portfolio import PortfolioConstructionModel class NadionUncoupledPrism(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 1, 1) self.SetEndDate(2011,1 ,1) self.SetCash(100000) self.SetBenchmark("QQQ") self.averages = {} #self.SetAlpha() self.AddEquity("SPY", Resolution.Daily) self.AddUniverseSelection(TechnologyUniverseModule()) self.AddRiskManagement(NullRiskManagementModel()) self.SetPortfolioConstruction(NullPortfolioConstructionModel()) self.SetExecution(ImmediateExecutionModel()) self.UniverseSettings.Resolution = Resolution.Daily def OnData(self, data): if self.IsWarmingUp: return for security in self.changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) for security in self.changes.AddedSecurities: if not security.Invested: self.SetHoldings(security.Symbol, .05) else: return def OnSecuritiesChanged(self, changes): self.changes = changes class TechnologyUniverseModule(FundamentalUniverseSelectionModel): #This module selects the most liquid stocks listed on the Nasdaq Stock Exchange. def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None): self.numberOfSymbolsCoarse = 1000 self.numberOfSymbolsFine = 100 self.dollarVolumeBySymbol = {} self.lastMonth = -1 self.averages = {} #Initializes a new default instance of the TechnologyUniverseModule super().__init__(filterFineData, universeSettings, securityInitializer) def SelectCoarse(self, algorithm, coarse): selected = [] if algorithm.Time.month == self.lastMonth: return Universe.Unchanged coarse = sorted([x for x in coarse if x.HasFundamentalData and x.Price > 10], key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse] for security in coarse: symbol = security.Symbol if symbol not in self.averages: history = algorithm.History(symbol, 200, Resolution.Daily) self.averages[symbol] = SelectionData(history) self.averages[symbol].update(algorithm.Time, security.AdjustedPrice) if self.averages[symbol].is_ready() and self.averages[symbol].fast > self.averages[symbol].slow: self.dollarVolumeBySymbol[symbol] = security.DollarVolume ''' -The stock must have fundamental data -The stock must have positive previous-month close price -The stock must have positive volume on the previous trading month ''' #self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume} # If no security has met the QC500 criteria, the universe is unchanged. if len(self.dollarVolumeBySymbol) == 0: return Universe.Unchanged return list(self.dollarVolumeBySymbol.keys()) #return list(self.dollarVolumeBySymbol.keys()) def SelectFine(self, algorithm, fine): sortedByDollarVolume = sorted([x for x in fine if x.CompanyReference.CountryId == "USA" \ and x.CompanyReference.PrimaryExchangeID == "NAS" \ and x.CompanyReference.IndustryTemplateCode == "N" \ and (algorithm.Time - x.SecurityReference.IPODate).days > 180], \ key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True) if len(sortedByDollarVolume) == 0: return Universe.Unchanged self.lastMonth = algorithm.Time.month return [x.Symbol for x in sortedByDollarVolume[:20]] class SelectionData(): # Update the constructor to accept a history array def __init__(self, history): self.slow = ExponentialMovingAverage(200) self.fast = ExponentialMovingAverage(50) # Loop over the history data and update the indicators for bar in history.itertuples(): self.fast.Update(bar.Index[1], bar.close) self.slow.Update(bar.Index[1], bar.close) def is_ready(self): return self.slow.IsReady and self.fast.IsReady def update(self, time, price): self.fast.Update(time, price) self.slow.Update(time, price)
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel class TechnologyUniverseModule(FundamentalUniverseSelectionModel): ''' This module selects the most liquid stocks listed on the Nasdaq Stock Exchange. ''' def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None): '''Initializes a new default instance of the TechnologyUniverseModule''' super().__init__(filterFineData, universeSettings, securityInitializer) self.numberOfSymbolsCoarse = 1000 self.numberOfSymbolsFine = 100 self.dollarVolumeBySymbol = {} self.lastMonth = -1 def SelectCoarse(self, algorithm, coarse): ''' Performs a coarse selection: -The stock must have fundamental data -The stock must have positive previous-day close price -The stock must have positive volume on the previous trading day ''' if algorithm.Time.month == self.lastMonth: return Universe.Unchanged sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0], key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse] self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume} # If no security has met the QC500 criteria, the universe is unchanged. if len(self.dollarVolumeBySymbol) == 0: return Universe.Unchanged return list(self.dollarVolumeBySymbol.keys()) def SelectFine(self, algorithm, fine): ''' Performs a fine selection: -The company's headquarter must in the U.S. -The stock must be traded on the NASDAQ stock exchange -The stock must be in the Industry Template Code catagory N -At least half a year since its initial public offering ''' # Filter stocks and sort on dollar volume sortedByDollarVolume = sorted([x for x in fine if x.CompanyReference.CountryId == "USA" and x.CompanyReference.PrimaryExchangeID == "NAS" and x.CompanyReference.IndustryTemplateCode == "N" and (algorithm.Time - x.SecurityReference.IPODate).days > 180], key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True) if len(sortedByDollarVolume) == 0: return Universe.Unchanged self.lastMonth = algorithm.Time.month return [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]