Overall Statistics |
Total Trades 1020 Average Win 0.85% Average Loss -0.60% Compounding Annual Return -7.260% Drawdown 52.400% Expectancy -0.071 Net Profit -32.172% Sharpe Ratio -0.261 Probabilistic Sharpe Ratio 0.082% Loss Rate 61% Win Rate 39% Profit-Loss Ratio 1.40 Alpha -0.047 Beta 0.009 Annual Standard Deviation 0.175 Annual Variance 0.031 Information Ratio -0.824 Tracking Error 0.242 Treynor Ratio -4.849 Total Fees $2350.15 Estimated Strategy Capacity $900000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X |
import numpy as np import pandas as pd from sklearn.neural_network import MLPClassifier class MachineLearningSPY(QCAlgorithm): def Initialize(self): self.SetStartDate(2016, 5, 2) self.SetEndDate(2021, 6, 22) self.SetCash(100000) self.AddEquity("SPY", Resolution.Daily) self.SetBenchmark("SPY") self.SetBrokerageModel(BrokerageName.AlphaStreams) self.SetExecution(ImmediateExecutionModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.AddUniverseSelection(ManualUniverseSelectionModel("SPY")) self.lookback = 30 self.SetWarmup(self.lookback) self.spyClose = RollingWindow[float](self.lookback) self.spyMomentum = RollingWindow[float](self.lookback) self.spyMomentum_indicator = self.MOMP("SPY", self.lookback, Resolution.Daily) self.AddAlpha(MachineLearningSPYAlphaModel(self.spyClose, self.spyMomentum, self.spyMomentum_indicator)) class MachineLearningSPYAlphaModel: def __init__(self, close, spyMomentum, spyMomentum_indicator): self.period = timedelta(30) self.spyClose = close self.spyMomentum = spyMomentum self.spyMomentum_indicator = spyMomentum_indicator def GetMLModel(self): self.MLModel = 0 self.MLModel = MLPClassifier(hidden_layer_sizes = (100, 100, 100, 100), max_iter = 1000) def Update(self, algorithm, data): insights = [] if data.Bars.ContainsKey("SPY"): self.spyMomentum_indicator.Update(data["SPY"].EndTime, data["SPY"].Close) self.spyMomentum.Add(self.spyMomentum_indicator.Current.Value) self.spyClose.Add(data["SPY"].Close) if not algorithm.IsWarmingUp and self.spyMomentum.IsReady and self.spyClose.IsReady: # features dataframe df1 = pd.DataFrame(self.spyMomentum, columns=["MOM"]).reset_index(drop=True) df2 = pd.DataFrame(self.spyClose, columns=["Close"]).reset_index(drop=True) self.df = pd.concat([df1, df2], axis=1) # calculate daily SPY forward returns to be used to set Target / Signal self.df['spyReturn'] = np.log(self.df['Close'].shift(-1)/self.df['Close']) self.df = self.df.dropna() # set Signal / Target self.df['Signal'] = 0 self.df.loc[self.df['spyReturn'] > 0, 'Signal'] = 1 self.df.loc[self.df['spyReturn'] < 0, 'Signal'] = -1 # set training data self.X = self.df.drop(['Close','Signal'], axis=1) self.Y = self.df['Signal'] self.Y, self.X = self.Y.align(self.X, axis=0, join='inner') self.X_train = self.X[:-1] self.Y_train = self.Y[:-1] self.X_train.replace([np.inf, -np.inf], np.nan, inplace=True) self.Y_train.replace([np.inf, -np.inf], np.nan, inplace=True) drops = [] [drops.append(i) for i in range(self.X_train.shape[0]) if self.X_train.iloc[i].isnull().any()] [drops.append(i) for i in range(self.Y_train.shape[0]) if self.Y_train.iloc[i] == np.nan and i not in drops] self.X_train.drop(index=self.X_train.index[drops], inplace=True) self.Y_train.drop(index=self.Y_train.index[drops], inplace=True) if self.X_train.empty or self.Y_train.empty: return [] # fit / train ML model self.GetMLModel() self.MLModel.fit(self.X_train, self.Y_train) # predict next day signal using today's values of feature set self.X_today = self.X.iloc[-1] # self.X_today is Series, so convert to numpy array self.X_today = self.X_today.to_numpy() # reshape self.X_today because it only has 1 day's sample self.X_today = self.X_today.reshape(1,-1) # Y_predict will take predicted signal self.Y_predict = self.Y.iloc[-1] try: self.Y_predict = self.MLModel.predict(self.X_today) except: return [] if self.Y_predict == 1: insights.append(Insight("SPY", self.period, InsightType.Price, InsightDirection.Up, 1, None)) elif self.Y_predict == -1: insights.append(Insight("SPY", self.period, InsightType.Price, InsightDirection.Down, 1, None)) return insights def OnSecuritiesChanged(self, algorithm, changes): self.changes = changes