Overall Statistics
Total Trades
601
Average Win
0.55%
Average Loss
-0.44%
Compounding Annual Return
17.135%
Drawdown
22.200%
Expectancy
0.085
Net Profit
11.053%
Sharpe Ratio
0.579
Loss Rate
52%
Win Rate
48%
Profit-Loss Ratio
1.24
Alpha
0.045
Beta
1.503
Annual Standard Deviation
0.305
Annual Variance
0.093
Information Ratio
0.367
Tracking Error
0.242
Treynor Ratio
0.118
Total Fees
$1643.39
/*
 * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
 * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); 
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
*/

using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;

namespace QuantConnect.Algorithm.CSharp
{
    /// <summary>
    /// In this algorithm we demonstrate how to define a universe
    /// as a combination of use the coarse fundamental data and fine fundamental data
    /// </summary>
    public class CoarseFineFundamentalComboAlgorithm : QCAlgorithm
    {
        private const int NumberOfSymbolsCoarse = 10;
        private const int NumberOfSymbolsFine = 2;

        // initialize our changes to nothing
        private SecurityChanges _changes = SecurityChanges.None;

        public override void Initialize()
        {
            UniverseSettings.Resolution = Resolution.Daily;

            SetStartDate(2016, 01, 01);
            SetCash(100000);// Take the top 50 by dollar volume using coarse 

            // this add universe method accepts two parameters:
            // - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
            // - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol>
            AddUniverse(CoarseSelectionFunction);
        }

        // filter the data by price > 10 and sort  by daily dollar volume and take the top 50
        public IEnumerable<Symbol> CoarseSelectionFunction(IEnumerable<CoarseFundamental> coarse)
        {
        	return coarse
        	    .Where(x => x.Price > 10)
        	    .OrderByDescending(x => x.DollarVolume)
        	    .Take(50)
        	    .Select(x => x.Symbol);
        }

        // sort the data by P/E ratio and take the top 'NumberOfSymbolsFine'
        public IEnumerable<Symbol> FineSelectionFunction(IEnumerable<FineFundamental> fine)
        {
            // sort descending by P/E ratio
            var sortedByPeRatio = fine.OrderByDescending(x => x.ValuationRatios.PERatio);

            // take the top entries from our sorted collection
            var topFine = sortedByPeRatio.Take(NumberOfSymbolsFine);

            // we need to return only the symbol objects
            return topFine.Select(x => x.Symbol);
        }

        //Data Event Handler: New data arrives here. "TradeBars" type is a dictionary of strings so you can access it by symbol.
        public void OnData(TradeBars data)
        {
            // if we have no changes, do nothing
            if (_changes == SecurityChanges.None) return;

            // liquidate removed securities
            foreach (var security in _changes.RemovedSecurities)
            {
                if (security.Invested)
                {
                    Liquidate(security.Symbol);
                    Debug("Liquidated Stock: " + security.Symbol.Value);
                }
            }

            // we want 50% allocation in each security in our universe
            foreach (var security in _changes.AddedSecurities)
            {
                SetHoldings(security.Symbol, 0.5m);
                Debug("Purchased Stock: " + security.Symbol.Value);
            }

            _changes = SecurityChanges.None;
        }

        // this event fires whenever we have changes to our universe
        public override void OnSecuritiesChanged(SecurityChanges changes)
        {
            _changes = changes;

            if (changes.AddedSecurities.Count > 0)
            {
                Debug("Securities added: " + string.Join(",", changes.AddedSecurities.Select(x => x.Symbol.Value)));
            }
            if (changes.RemovedSecurities.Count > 0)
            {
                Debug("Securities removed: " + string.Join(",", changes.RemovedSecurities.Select(x => x.Symbol.Value)));
            }
        }
    }
}