# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Indicators")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from QuantConnect.Data import *
### <summary>
### In this example we look at the canonical 15/30 day moving average cross. This algorithm
### will go long when the 15 crosses above the 30 and will liquidate when the 15 crosses
### back below the 30.
### </summary>
### <meta name="tag" content="indicators" />
### <meta name="tag" content="indicator classes" />
### <meta name="tag" content="moving average cross" />
### <meta name="tag" content="strategy example" />
#class MovingAverageCrossAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2019, 2, 1) #Set Start Date
# self.SetEndDate(2019, 6, 1) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("AAPL")
#def OnData(self, data):
# tradeBarHistory = self.data.close["AAPL", -1]
# stopPrice = tradeBarHistory * (.9975)
# create a 15 day exponential moving average
self.fast = self.EMA("AAPL", 15, Resolution.Minute)
# create a 30 day exponential moving average
self.slow = self.EMA("AAPL", 5, Resolution.Minute)
self.previous = None
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.'''
# a couple things to notice in this method:
# 1. We never need to 'update' our indicators with the data, the engine takes care of this for us
# 2. We can use indicators directly in math expressions
# 3. We can easily plot many indicators at the same time
#stop loss calculate
tradeBarHistory = self.data.close["AAPL", -1]
stopPrice = tradeBarHistory * (.9975)
# define a small tolerance on our checks to avoid bouncing
tolerance = 0.000015
holdings = self.Portfolio["AAPL"].Quantity
# we only want to go long if we're currently short or flat
if holdings <= 0:
# if the fast is greater than the slow, we'll go long
if self.fast.Current.Value < self.Securities["AAPL"].Price *(1 + tolerance):
self.Log("BUY >> {0}".format(self.Securities["AAPL"].Price))
self.SetHoldings("AAPL", 1.0)
# we only want to liquidate if we're currently long
# if the fast is less than the slow we'll liquidate our long
if holdings > 0 and self.fast.Current.Value < self.Securities["AAPL"].Price:
self.Log("SELL >> {0}".format(self.Securities["AAPL"].Price))
self.Liquidate("AAPL")
self.previous = self.Time
# self.SetHoldings("SPY", 1)
if holdings > 0 and self.Securities["AAPL"].Price < stopPrice:
self.Log("SELL >> {0}".format(self.Securities["AAPL"].Price))
self.Liquidate("AAPL")