#region imports
from AlgorithmImports import *
#endregion
# Errors To Resolve:
# 1. Rolling window is empty (Parameter 'i') in RollingWindow.cs:line 143 - For now I have commented below line in Alpha Model
# self.algo.Debug(f"Yesterday's Date:{self.algo.Time} Nasdaq Close:{self.nasdaqYesterdayClose[0]}, Lumber Close: {self.lumberYesterdayClose[0]}")
# 2. Backtest Handled Error: Order Error: id: 5848, Insufficient buying power to complete order (Value:-41569), Reason: Id: 5848, Initial Margin: -5942.47, Free Margin: 2711.08.
# 3. Backtest Handled Error: You have exceeded maximum number of orders (10000), for unlimited orders upgrade your account.
# ToDo
# 1. Use the TAG property in Orders to fill Name of Strategy that executed that Order
# 2. For AlphaModel confidence in Insight, get 52 Week High & Low for Nasdaq in % terms and then confidence = self.percentageChange/52 Week high or Low depending on Long / Short
# 3. When checking condition to generate Long or Short Insight, make sure to get last non zero price for Bid and Ask for Lumber Quotes
# 4.
# ToCheck/ AskQC
# 1.
# Trade Logic
# ALPHA Model
""" Securities :Lumber and Nasdaq
Resolution:Tick
1.Calculate NASDAQ %age change using NASDAQ yesterday Close & current* Trade Price.
2.Compare Pre-Market LUMBER ASK/BID vs LUMBER yesterday Close
3.Take Positions Based on Following Logic
a. Go Long if both True (1) >1% & (2) LUMBER ASK/BID > LUMBER yesterday Close
b. Go Short if both True (1) <1% & (2) LUMBER ASK/BID < LUMBER yesterday Close
4. Number of Contracts (Insight Weights) depends on %age change in Nasdaq (1):
a. More than 1% absolute change equates to 1 Contracts
b. More than 2% absolute change equates to 2 Contracts & so on
*current: This is Pre-Market LUMBER (just before market opens)"""
# OrderType:LimitOrder
"""1. check if the target quantity is positive or negative.
2. if negative
2.1 we are shorting then use the BestAsk
2.2 calculate the sell price by increasing the BestAsk by one percent.
2.3 place the limit order at the calculate price.
3. if Positive
2.1 we are longing (buying) then use the BestAsk
2.2 calculate the buy price by decreasing the BestBid by one percent.
2.3 place the limit order at the calculate price."""
from AlgorithmImports import *
import numpy as np
class MyExecution(ExecutionModel):
def __init__(self,algo):
self.algo=algo # create the algo instance
self.orderCounter = 1
def Execute(self, algorithm: QCAlgorithm, targets: List[PortfolioTarget]) -> None:
# update the complete set of portfolio targets with the new targets
self.algo.targetsCollection.AddRange(targets)
if not self.algo.targetsCollection.IsEmpty:
for target in self.algo.targetsCollection.Values:
# check order entry conditions
if target.Quantity != 0: # Is this neccessary?
self.algo.Debug(f"target.Quantity:{target.Quantity}")
for _ in range(abs(int(target.Quantity))*self.algo.orderMultiplier):
orderPrice = self.GetOrderPrice(target, algorithm)
#initiate Trade class
trade=Trade(algorithm)
ticket=trade.placeMainOrder(target.Symbol, np.sign(target.Quantity)*1, orderPrice,self.algo.order_properties)
self.algo.tradesCollection[str(ticket.OrderId)] = trade
# why not creating a dict like this
# self.algi.ticketDict[ticket.OrderId]={"OrderType":"Main","StopLossId":None,"TakeProfitId":None}
# ticket = algorithm.LimitOrder(target.Symbol, target.Quantity, orderPrice,None,self.order_properties)
# self.algo.ticketDict[ticket.OrderId] = ['Main',[self.algo.Transactions.GetOrderTicket(ticket.OrderId)],None,0]
# ticket.UpdateTag('LumberCopyNasdaq' + '_ID_' + str(ticket.OrderId))
self.algo.targetsCollection.Clear()
def GetOrderPrice(self, target, algorithm):
orderPrice = None
if target.Quantity > 0:
# Calculate new orderPrice by reducing BestBid by 1%
bid = algorithm.Securities[target.Symbol].BidPrice
orderPrice = round(bid - (bid*0.01),1) # Less Competitive
# orderPrice = round(bid + (bid*0.01),1) # More Competitive
elif target.Quantity < 0:
# Calculate new orderPrice by increasing BestAsk by 1%
ask = algorithm.Securities[target.Symbol].AskPrice
if self.orderCounter == 1: # This is temporary so we can see 2 different Asks for 2 positions
orderPrice = round(ask + (ask*0.01),1) # Less Competitive
else:
orderPrice = round(ask + (ask*0.03),1) # Less Competitive
# orderPrice = round(ask - (ask*0.01),1) # More Competitive
self.orderCounter +=1
return orderPrice
class Trade():
def __init__(self,algo):
self.mainOrderTicket=None
self.stopLossTicket=None
self.takeProfitTicket=None
self.algo=algo
self.trailingStopLoss=False
def placeMainOrder(self,symbol,quantity,orderPrice,orderProperties=None):
if orderProperties:
self.mainOrderTicket=self.algo.LimitOrder(symbol=symbol, quantity=quantity, limitPrice=orderPrice,orderProperties=orderProperties) # , orderProperties= self.algo.order_properties
else:
self.mainOrderTicket=self.algo.LimitOrder(symbol=symbol, quantity=quantity, limitPrice=orderPrice,orderProperties=orderProperties) # , orderProperties= self.algo.order_properties
return self.mainOrderTicket
def updateMainOrder(self, price):
response = self.mainOrderTicket.UpdateLimitPrice(price)
if response.IsSuccess:
self.algo.Debug("MainOrder with Order_id {} Updated Successfully".format(self.mainOrderTicket.OrderId))
return True
def updateStopOrderPrice(self, stopPrice):
response = self.stopLossOrderTicket.UpdateStopPrice(price)
if response.IsSuccess:
self.algo.Debug("Stop Price of StopLossOrder with Order_id {} Updated Successfully".format(self.stopLossTicket.OrderId))
return True
def getMainOrderId(self):
self.mainOrderTicket.OrderId
def placeStopLossOrder(self,quantity,stopPrice,limitPrice,orderProperties=None):
if orderProperties:
self.stopLossTicket=self.algo.StopLimitOrder(symbol=self.mainOrderTicket.Symbol, quantity=quantity, stopPrice=stopPrice, limitPrice=limitPrice,tag=str(self.mainOrderTicket.OrderId),orderProperties=orderProperties)
else:
self.stopLossTicket=self.algo.StopLimitOrder(symbol=self.mainOrderTicket.Symbol, quantity=quantity, stopPrice=stopPrice, limitPrice=limitPrice,tag=str(self.mainOrderTicket.OrderId))
return self.stopLossTicket
def placeTakeProfitOrder(self,quantity,limitPrice,orderProperties=None):
if orderProperties:
self.takeProfitTicket=self.algo.LimitOrder( symbol=self.mainOrderTicket.Symbol, quantity=quantity, limitPrice=limitPrice,tag=str(self.mainOrderTicket.OrderId),orderProperties=orderProperties)
else:
self.takeProfitTicket=self.algo.LimitOrder( symbol=self.mainOrderTicket.Symbol, quantity=quantity, limitPrice=limitPrice,tag=str(self.mainOrderTicket.OrderId)) #, orderProperties= self.algo.order_properties
return self.takeProfitTicket
def cancelStopLoss(self):
response=self.stopLossTicket.Cancel()
if response.IsSuccess:
self.algo.Debug("StopLossOrder with Order_id {} connected to main order {} Cancelled Successfully".format(self.stopLossTicket.OrderId,self.stopLossTicket.Tag))
self.stopLossTicket=None
return True
def cancelTakeProfit(self):
response=self.takeProfitTicket.Cancel()
if response.IsSuccess:
self.algo.Debug("TakeProfit Order with Order_id {} connected to main order {} Cancelled Successfully".format(self.takeProfitTicket.OrderId,self.takeProfitTicket.Tag))
self.takeProfitTicket = None
return True
def cancelMainOrder(self):
response=self.MainOrderTicket.Cancel()
if response.IsSuccess:
self.algo.Debug("MainOrder with Order_id {} orderStatus:{} Cancelled Successfully".format(self.mainOrderTicket.OrderId,self.mainOrderTicket.OrderStatus))
# del self.algo.tradesCollection[main_id]
return True
def getMainOrderTicket(self):
return self.mainOrderTicket
def getStopLossOrderTicket(self):
return self.stopLossOrderTicket
def getTakeProfitTicket(self):
return self.takeProfitTicket
def adjustTrailing(self):
if self.mainOrderTicket.Status == OrderStatus.Filled:
# get main order fill price and current price
mainOrderFillPrice=self.mainOrderTicket.FillPrice
currentPrice=self.algo.Securities[self.mainOrderTicket.Symbol].Price
# check if current price is more than fill price
if currentPrice > mainOrderFillPrice:
# calculate the drawdown since fill price
changeInPrice=((currentPrice-mainOrderFillPrice)/currentPrice)*100
# update the stoploss stoploss stopprice
stopPrice=self.stopLossTicket.get(OrderField.StopPrice)
response=self.updateStopOrderPrice(stopPrice*changeInPrice)
return response
from AlgorithmImports import *
class MyExecution(ExecutionModel):
def Execute(self, algorithm: QCAlgorithm, targets: List[PortfolioTarget]) -> None:
for target in targets:
security = algorithm.Securities[target.Symbol]
quantity = OrderSizing.GetUnorderedQuantity(algorithm, target, security)
currentContract = algorithm.Securities[security.Mapped]
algorithm.Debug(f"target in ExecutionModel-:-{security} & quantity: {quantity}")
if quantity != 0:
aboveMinimumPortfolio = BuyingPowerModelExtensions.AboveMinimumOrderMarginPortfolioPercentage(currentContract.BuyingPowerModel, currentContract, quantity, algorithm.Portfolio, algorithm.Settings.MinimumOrderMarginPortfolioPercentage)
if aboveMinimumPortfolio:
algorithm.MarketOrder(currentContract.Symbol, quantity)
algorithm.Debug(f"Worked in ExecutionModel")
from AlgorithmImports import *
class MyExecution(ExecutionModel):
def Execute(self, algorithm: QCAlgorithm, targets: List[PortfolioTarget]) -> None:
for target in targets:
security = algorithm.Securities[target.Symbol]
quantity = OrderSizing.GetUnorderedQuantity(algorithm, target, security)
currentContract = algorithm.Securities[security.Mapped]
algorithm.Debug(f"target in ExecutionModel-:-{security} & quantity: {quantity}")
if quantity != 0:
aboveMinimumPortfolio = BuyingPowerModelExtensions.AboveMinimumOrderMarginPortfolioPercentage(currentContract.BuyingPowerModel, currentContract, quantity, algorithm.Portfolio, algorithm.Settings.MinimumOrderMarginPortfolioPercentage)
if aboveMinimumPortfolio:
algorithm.MarketOrder(currentContract.Symbol, quantity)
algorithm.Debug(f"Worked in ExecutionModel")
for prop in dir(target):
value = getattr(target, prop)
algorithm.Debug(f"{prop}:{value}")
from AlgorithmImports import *
class NasdaqAlpha(AlphaModel):
def __init__(self, algo):
# Save an Instance of our Main Algorithm
self.algo = algo
# variable to hold nasdaq percentage change
self.algo.percentageChange=None
# Check Entry Condition only 30 seconds prior to Market Open
self.entryTimeStart = self.algo.Time.replace(hour=9, minute=59, second=30, microsecond=0)
self.entryTimeEnd = self.algo.Time.replace(hour=10, minute=2, second= 10, microsecond=0)
# ROLLING WINDOWS TO HOLD YESTERDAY'S CLOSE
self.nasdaqYesterdayClose = RollingWindow[float](1)
self.lumberYesterdayClose = RollingWindow[float](1)
#insight arguments
self.insightPeriod = timedelta(hours = 1)
self.insightDailyCount = 0
# DICT TO HOLD INSIGHT TIME
self.insightsTimeBySymbol = {}
#rolling window to handle latest bid and ask
self.latestBidRolling = RollingWindow[float](1)
self.latestAskRolling = RollingWindow[float](1)
# LIST AND COLLECTION FOR INSIGHTS
self.insights = []
self.insightCollection = InsightCollection()
def OnLumberOpen(self):
#Resetting Latest Bid And Ask Rolling Window
self.latestAskRolling.Reset()
self.latestBidRolling.Reset()
# GET LUMBER YESTERDAY'S CLOSE
lumber_history = self.algo.History(self.algo.lumberSymbol,7,Resolution.Daily)
for bar in lumber_history.itertuples():
self.lumberYesterdayClose.Add(bar.close)
# GET NASDAQ'S YESTERDAY CLOSE
nasdaq_history = self.algo.History(self.algo.nasdaqSymbol,7,Resolution.Daily)
for bar in nasdaq_history.itertuples():
self.nasdaqYesterdayClose.Add(bar.close)
self.insightDailyCount = 0 # Reset it to 0 every morning
# self.algo.Debug(f"Yesterday's Date:{self.algo.Time} Nasdaq Close:{self.nasdaqYesterdayClose[0]}, Lumber Close: {self.lumberYesterdayClose[0]}")
def OnLumberClose(self):
# Ideally this code should be inside EndOfDay in our Main class
# GeneratedTimeUtc : Gets the utc time this insight was generated
# CloseTimeUtc : Gets the insight's prediction end time. This is the time when this insight prediction
# is expected to be fulfilled. This time takes into account market hours, weekends, as well as the symbol's data resolution
insight_properties = ['Symbol','GeneratedTimeUtc','CloseTimeUtc','Direction','EstimatedValue','Weight','Id','Magnitude','Confidence','Period','Score','IsActive','IsExpired']
for insight in self.insights:
for prop in insight_properties:
if prop in ['GeneratedTimeUtc','CloseTimeUtc']:
value = getattr(insight, prop) - timedelta(hours = 5) # Converting UTC to EST
else:
value = getattr(insight, prop)
# self.algo.Debug(f"{prop}:{value}")
def OnSecuritiesChanged(self, algorithm,changes):
for security in changes.AddedSecurities:
if security.Symbol == self.algo.lumberSymbol:
# schedule an event to trigger before lumber market opens to get yesterday close for both nasdaq and lumber
algorithm.Schedule.On(algorithm.DateRules.EveryDay(security.Symbol), algorithm.TimeRules.AfterMarketOpen(security.Symbol, -2), self.OnLumberOpen)
# algorithm.Schedule.On(algorithm.DateRules.EveryDay(security.Symbol), algorithm.TimeRules.BeforeMarketClose(security.Symbol, 2), self.OnLumberClose)
for security in changes.RemovedSecurities:
if security.Symbol in self.insightsTimeBySymbol:
# REMOVE SECURITY FROM DICT
self.insightsTimeBySymbol.pop(security.Symbol)
def Update(self, algorithm, data):
# CHECK IF MARKET HOURS ARE VALID
if algorithm.Time < self.entryTimeStart or algorithm.Time > self.entryTimeEnd:
return []
insight = None
#CHECK IF YESTERDAY'S LUMBER CLOSE AND NASDAQ CLOSE IS READY
if self.lumberYesterdayClose.IsReady and self.nasdaqYesterdayClose.IsReady:
for security in data.Keys:
# algorithm.Debug(f'{security}')
ticks=data.Ticks[security]
if security == self.algo.nasdaqSymbol:
for tick in ticks:
if tick.TickType == TickType.Trade:
self.algo.percentageChange=((tick.Price - self.nasdaqYesterdayClose[0])/self.nasdaqYesterdayClose[0])*100
if int(self.algo.nasdaqROCP.Current.Value) != 0:
pass
# algorithm.Debug(f"self.algo.percentageChange:{self.algo.percentageChange}, \
# self.algo.nasdaqROCP:{self.algo.nasdaqROCP.Current.Value}, self.algo.nasdaqDailyChange52High:{self.algo.nasdaqDailyChange52High.Current.Value}, self.algo.nasdaqDailyChange52Low:{self.algo.nasdaqDailyChange52Low.Current.Value} ")
if security == self.algo.lumberSymbol:
for tick in ticks:
if tick.TickType == TickType.Quote:
# algorithm.Debug(f"bid is {tick.BidPrice} ask is {tick.AskPrice}")
# check if tick ask is equal to 0.0 and
# there is no ask price in rolling window
if int(tick.AskPrice) == 0 and not self.latestAskRolling.IsReady:
ask = algorithm.Securities[security].AskPrice
# algorithm.Debug(f"ask was {tick.AskPrice} so using last ask {ask}")
# check if tick ask is equal to 0.0 and
# there is ask price in rolling window
elif int(tick.AskPrice) == 0 and self.latestAskRolling.IsReady:
ask = self.latestAskRolling[0]
# algorithm.Debug(f"ask was {tick.AskPrice} so using last ask from rolling window {ask}")
else:
ask = tick.AskPrice
self.latestAskRolling.Add(ask)
# check if tick bid is equal to 0.0 and
# there is no bid price in rolling window
if int(tick.BidPrice) == 0 and not self.latestBidRolling.IsReady:
bid = algorithm.Securities[security].BidPrice
# algorithm.Debug(f"bid was {tick.BidPrice} so using last bid {bid}")
# check if tick bid is equal to 0.0 and
# there is Bid price in rolling window
elif int(tick.BidPrice) == 0 and self.latestBidRolling.IsReady:
bid = self.latestBidRolling[0]
# algorithm.Debug(f"bid was {tick.BidPrice} so using last bid from rolling window {bid}")
else:
bid = tick.BidPrice
# adding the bid to rolling window
self.latestBidRolling.Add(bid)
# algorithm.Debug(f'ask:{tick.AskPrice} bid:{tick.BidPrice} time:{algorithm.Time}')
#CHECK IF LUMBER ASK ,TRADE IS GREATER THAN YESTERDAY LUMBER CLOSE AND NASDAQ CHANGE IS MORE THAN 1
if ask > self.lumberYesterdayClose[0] and bid > self.lumberYesterdayClose[0] and self.algo.percentageChange and self.algo.percentageChange > 1 and self.ShouldEmitInsight(algorithm.Time,security):
algorithm.Debug(f"Position Up: Date{algorithm.Time} Nasdaq ∆:{self.algo.percentageChange},Lumber Yesterday Close:{self.lumberYesterdayClose[0]}, Lumber Ask:{ask}, Lumber Bid:{bid}")
insight = Insight(self.algo._lumberContract.Mapped,self.insightPeriod, InsightType.Price, InsightDirection.Up)
algorithm.Debug(f"Up Insight generated at: {algorithm.Time}")
self.insights.append(insight)
#CHECK IF LUMBER ASK ,TRADE IS LESS THAN YESTERDAY LUMBER CLOSE AND NASDAQ CHANGE IS LESS THAN -1
elif bid < self.lumberYesterdayClose[0] and ask < self.lumberYesterdayClose[0] and self.algo.percentageChange and self.algo.percentageChange < -1 and self.ShouldEmitInsight(algorithm.Time,security):
algorithm.Debug(f"Position Down: Date{algorithm.Time} Nasdaq ∆:{self.algo.percentageChange},Lumber Yesterday Close:{self.lumberYesterdayClose[0]}, Lumber Ask:{ask}, Lumber Bid:{bid}")
# Insight(symbol, period, type, direction, magnitude=None, confidence=None, sourceModel=None, weight=None)
insight = Insight(self.algo._lumberContract.Mapped,self.insightPeriod, InsightType.Price, InsightDirection.Down)
algorithm.Debug(f"Down Insight generated at: {algorithm.Time}")
self.insights.append(insight)
#ELSE NO CONDITION MET
else:
# algorithm.Debug(f"No Condition Met, Date:{algorithm.Time}")
pass
if insight is not None: self.insightCollection.Add(insight)
return self.insights
def ShouldEmitInsight(self, utcTime, symbol):
generatedTimeUtc = self.insightsTimeBySymbol.get(symbol)
self.insightDailyCount +=1
if generatedTimeUtc is not None:
# we previously emitted a insight for this symbol, check it's period to see if we should emit another insight
if utcTime - generatedTimeUtc < self.insightPeriod and self.insightDailyCount > 1:
return False
# we either haven't emitted a insight for this symbol or the previous insight's period has expired, so emit a new insight now for this symbol
self.insightsTimeBySymbol[symbol] = utcTime
return True
from AlgorithmImports import *
class NasdaqAlpha(AlphaModel):
def __init__(self, algo):
self.percentageChange=None # variable to hold nasdaq percentage change
self.algo = algo # Save an Instance of our Main Algorithm
self.nasdaqYesterdayClose = RollingWindow[float](1)
self.lumberYesterdayClose = RollingWindow[float](1)
# Lumber & Nasdaq Symbols
self.lumberSymbol = self.algo._lumberContract.Symbol
self.nasdaqSymbol = self.algo._nasdaqContract.Symbol
self.entryTimeStart = self.algo.Time.replace(hour=10, minute=0, second=0, microsecond=0)
self.entryTimeEnd = self.algo.Time.replace(hour=15, minute=45, second=0, microsecond=0)
#insight arguments
self.insightPeriod = timedelta(minutes=60)
# self.insightPeriod = Expiry.EndOfDay(self.algo.Time) - timedelta(seconds=1)
self.insightsTimeBySymbol = {}
self.insights = []
self.insightCollection = InsightCollection()
self.count = 0
def OnLumberOpen(self):
# get Lumber yesterday close
lumber_history = self.algo.History(self.lumberSymbol,1,Resolution.Daily)
for bar in lumber_history.itertuples():
self.lumberYesterdayClose.Add(bar.close)
# get nasdaq yesterday close
nasdaq_history = self.algo.History(self.nasdaqSymbol,1,Resolution.Daily)
for bar in nasdaq_history.itertuples():
self.nasdaqYesterdayClose.Add(bar.close)
self.algo.Debug(f"Yesterday's Date:{self.algo.Time} Nasdaq Close:{self.nasdaqYesterdayClose[0]}, Lumber Close: {self.lumberYesterdayClose[0]}")
def OnLumberClose(self):
# Ideally this code should be inside EndOfDay in our Main class
# GeneratedTimeUtc : Gets the utc time this insight was generated
# CloseTimeUtc : Gets the insight's prediction end time. This is the time when this insight prediction is expected to be fulfilled. This time takes into account market hours, weekends, as well as the symbol's data resolution
insight_properties = ['Symbol','GeneratedTimeUtc','CloseTimeUtc','Direction','EstimatedValue','Weight','Id','Magnitude','Confidence','Period','Score','IsActive','IsExpired']
for insight in self.insights:
for prop in insight_properties:
if prop in ['GeneratedTimeUtc','CloseTimeUtc']:
value = getattr(insight, prop) - timedelta(hours = 5) # Converting UTC to EST
else:
value = getattr(insight, prop)
self.algo.Debug(f"{prop}:{value}")
# Check if any Insights are Active
self.algo.Debug(f"Active Insights: {self.insightCollection.GetActiveInsights(self.algo.UtcTime)} Time {self.algo.Time}")
# Check if any Insights are Expired (Also Remove them)
self.algo.Debug(f"Expired Insights: {self.insightCollection.RemoveExpiredInsights(self.algo.UtcTime)} Time {self.algo.Time}")
def OnSecuritiesChanged(self, algorithm,changes):
for security in changes.AddedSecurities:
if security.Symbol == self.lumberSymbol:
# schedule an event to trigger before lumber market opens to get yesterday close for both nasdaq and lumber
# algorithm.Schedule.On(algorithm.DateRules.EveryDay(security.Symbol), algorithm.TimeRules.AfterMarketOpen(security.Symbol, -2), self.OnLumberOpen)
# algorithm.Schedule.On(algorithm.DateRules.EveryDay(security.Symbol), algorithm.TimeRules.BeforeMarketClose(security.Symbol, -2), self.OnLumberClose)
pass
for security in changes.RemovedSecurities:
if security.Symbol in self.insightsTimeBySymbol:
# self.insightsTimeBySymbol.pop(security.Symbol)
pass
def Update(self, algorithm, data):
if algorithm.Time < self.entryTimeStart or algorithm.Time > self.entryTimeEnd:
return []
insights = []
for security in data.Keys:
ticks=data.Ticks[security]
for tick in ticks:
if tick.TickType == TickType.Quote:
if tick.BidPrice != 0 and security == self.lumberSymbol and self.ShouldEmitInsight(algorithm.UtcTime, security):
algorithm.Debug(f"Position Up Generated: Date{algorithm.Time}")
if (self.count % 2) == 0: # If even
insights.append(Insight(security, self.insightPeriod, InsightType.Price, InsightDirection.Up, magnitude = None, confidence = None))
else:
insights.append(Insight(security, self.insightPeriod, InsightType.Price, InsightDirection.Down, magnitude = None, confidence = None))
self.count += 1
return insights
def ShouldEmitInsight(self, utcTime, symbol):
generatedTimeUtc = self.insightsTimeBySymbol.get(symbol)
if generatedTimeUtc is not None:
# we previously emitted a insight for this symbol, check it's period to see if we should emit another insight
if utcTime - generatedTimeUtc < self.insightPeriod:
return False
# we either haven't emitted a insight for this symbol or the previous insight's period has expired, so emit a new insight now for this symbol
self.insightsTimeBySymbol[symbol] = utcTime
return True
from AlgorithmImports import *
class MyPortfolio(PortfolioConstructionModel):
def __init__(self,algo,rebalancingFunc=None,portfolioBias=PortfolioBias.LongShort):
# rebalancingFunc=Resolution.Daily
self.algo=algo # create the algo instance
self.portfolioBias=portfolioBias
self.setTargets = False
def CreateTargets(self, algorithm, insights):
tempCounter = 1
""" This method is used to analyze the insights and determine for which insight
we need to create portfolio target i.e based on weight magnitude confidence etc.."""
targets = []
for insight in insights:
# check if insight respects the portifolio bias
if self.RespectPortfolioBias(insight) :
# Fills up self.algo.positionCount
self.GetPositionCount()
# self.algo.Debug(f"Count of positionCount in CreateTargets of PortfolioModel: {abs(self.algo.positionCount)}")
# Append PortfolioTargets List with One Order at a Time rather than 1 element with All Order quantity
if not self.setTargets:
# self.algo.Debug(f"tempCounter in CreateTargets of PortfolioModel: {tempCounter}")
targets.append(PortfolioTarget(insight.Symbol,self.algo.positionCount))
# self.algo.Debug(f"Count of Insights in CreateTargets of PortfolioModel: {len(insights)} at Time: {self.algo.Time}")
self.setTargets = True
# if targets and not self.setTargets:
# for target in targets:
# self.algo.Debug(f"Target in Portfolio Construction-:-{target}")
# pass
# self.setTargets = True
return targets
def GetPositionCount(self):
if np.sign(self.algo.percentageChange * 1) == -1:
self.algo.positionCount = math.ceil(self.algo.percentageChange) * 1
elif np.sign(self.algo.percentageChange * 1) == 1:
self.algo.positionCount = math.floor(self.algo.percentageChange) * 1
def RespectPortfolioBias(self, insight):
"""method is used to check if the long,short or both position are allowed by portifolio"""
return self.portfolioBias == PortfolioBias.LongShort or insight.Direction == PortfolioBias.Long or insight.Direction == PortfolioBias.Short
def ShouldCreateTargetForInsight(self, insight: Insight) -> bool:
""" This method is used to check for which insight we are supposed to generate the
portfolio target we can use magnitude, weight and other aspects for this"""
return True
def DetermineTargetPercent(self, activeInsights):
"""This method is used to calculate the %age of portifolio or no of stocks we want to set"""
pass
from AlgorithmImports import *
class MyPortfolio(PortfolioConstructionModel):
def __init__(self, algo):
# super().__init__()
self.algo = algo # Save an Instance of our Main Algorithm
def CreateTargets(self, algorithm, insights):
targets = []
for insight in insights:
self.algo.Debug(f"insight in Portfolio Construction:{insight}")
targets.append(PortfolioTarget(insight.Symbol, insight.Direction*1))
if targets:
for target in targets:
self.algo.Debug(f"target in Portfolio Construction-:-{target}")
return targets
def DetermineTargetPercent(self, activeInsights):
self.algo.Debug(f"Inside DetermineTargetPercent in Portfolio Construction:{insight}")
for insight in activeInsights:
self.algo.Debug(f"active insight in DetermineTargetPercent:{insight}")
# result = {}
# # give equal weighting to each security
# count = sum(x.Direction != InsightDirection.Flat for x in activeInsights)
# self.algo.Debug(f"count in DetermineTargetPercent:{count}")
# percent = 0.2 if count == 0 else 1.0 / count
# for insight in activeInsights:
# self.algo.Debug(f"active insight in DetermineTargetPercent:{insight}")
# result[insight] = (InsightDirection.Up) * percent
# return result
def RespectPortfolioBias(self, insight):
return True
def ShouldCreateTargetForInsight(self, insight: Insight) -> bool:
return True
from AlgorithmImports import *
import numpy as np
class MyPortfolio(PortfolioConstructionModel):
def __init__(self,algo,rebalancingFunc=None,portfolioBias=PortfolioBias.LongShort):
# rebalancingFunc=Resolution.Daily
self.algo=algo # create the algo instance
self.portfolioBias=portfolioBias
self.setTargets = False
def CreateTargets(self, algorithm, insights):
tempCounter = 1
""" This method is used to analyze the insights and determine for which insight
we need to create portfolio target i.e based on weight magnitude confidence etc.."""
targets = [] # list to hold targets
for insight in insights:
# check if insight respects the portifolio bias
if self.RespectPortfolioBias(insight) :
# self.algo.Debug(f"Insight in Portfolio Construction:{insight}")
# targets.append(PortfolioTarget(insight.Symbol,insight.Direction*1))
# Fills up self.algo.positionCount
self.GetPositionCount()
# self.algo.Debug(f"Count of positionCount in CreateTargets of PortfolioModel: {abs(self.algo.positionCount)}")
# Append PortfolioTargets List with One Order at a Time rather than 1 element with All Order quantity
if not self.setTargets:
for _ in range(abs(self.algo.positionCount)):
# self.algo.Debug(f"tempCounter in CreateTargets of PortfolioModel: {tempCounter}")
targets.append(PortfolioTarget(insight.Symbol,np.sign(self.algo.positionCount)*1))
tempCounter +=1
# self.algo.Debug(f"Count of Insights in CreateTargets of PortfolioModel: {len(insights)} at Time: {self.algo.Time}")
self.setTargets = True
# if targets and not self.setTargets:
# for target in targets:
# self.algo.Debug(f"Target in Portfolio Construction-:-{target}")
# pass
# self.setTargets = True
return targets
def GetPositionCount(self):
if np.sign(self.algo.percentageChange * 1) == -1:
self.algo.positionCount = math.ceil(self.algo.percentageChange) * 1
elif np.sign(self.algo.percentageChange * 1) == 1:
self.algo.positionCount = math.floor(self.algo.percentageChange) * 1
def RespectPortfolioBias(self, insight):
"""method is used to check if the long,short or both position are allowed by portifolio"""
return self.portfolioBias == PortfolioBias.LongShort or insight.Direction == PortfolioBias.Long or insight.Direction == PortfolioBias.Short
def ShouldCreateTargetForInsight(self, insight: Insight) -> bool:
""" This method is used to check for which insight we are supposed to generate the
portfolio target we can use magnitude, weight and other aspects for this"""
return True
def DetermineTargetPercent(self, activeInsights):
"""This method is used to calculate the %age of portifolio or no of stocks we want to set"""
pass
from AlgorithmImports import *
class MyRiskManagementModel(RiskManagementModel):
def __init__(self, algo):
self.algo = algo # Save an Instance of our Main Algorithm
self.count = 0
self.target_modified = []
# Adjust the portfolio targets and return them. If no changes emit nothing.
def ManageRisk(self, algorithm: QCAlgorithm, targets: List[PortfolioTarget]) -> List[PortfolioTarget]:
for target in targets:
# self.algo.Debug(f"target in RiskManagamenet-:-{target}")
pass
return targets
from AlgorithmImports import *
class MyRiskManagementModel(RiskManagementModel):
def __init__(self, algo):
self.algo = algo # Save an Instance of our Main Algorithm
self.count = 0
self.target_modified = []
# Adjust the portfolio targets and return them. If no changes emit nothing.
def ManageRisk(self, algorithm: QCAlgorithm, targets: List[PortfolioTarget]) -> List[PortfolioTarget]:
for target in targets:
self.algo.Debug(f"target in RiskManagamenet-:-{target}")
return targets
from AlgorithmImports import *
from NasdaqAlpha import *
from PortfolioModel import *
from ExecutionModel import *
from RiskModel import *
from orderEnum import *
import numpy as np
class NasdaqStrategy(QCAlgorithm):
def Initialize(self):
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
self.DefaultOrderProperties = InteractiveBrokersOrderProperties()
# Set a Limit Order to be good until market close
self.DefaultOrderProperties.TimeInForce = TimeInForce.Day
# Set a Limit Order to be good until noon
self.order_properties = OrderProperties()
self.order_properties.TimeInForce = TimeInForce.GoodTilDate(self.Time.replace(hour=16, minute=0, second= 0, microsecond=0))
# self.DefaultOrderProperties.OutsideRegularTradingHours = True
# Set start and end time for backtest
self.SetStartDate(2022, 12, 22)
self.SetEndDate(2022,12,23)
# self.SetEndDate(datetime.now() - timedelta(2))
self.SetCash(1000000)
# Lumber security
self._lumberContract=self.AddFuture(Futures.Forestry.RandomLengthLumber,
Resolution.Tick,dataMappingMode=DataMappingMode.FirstDayMonth,contractDepthOffset=0,
dataNormalizationMode=DataNormalizationMode.Raw,extendedMarketHours=True, fillDataForward = True)
# Nasdaq security
self._nasdaqContract=self.AddFuture(Futures.Indices.MicroNASDAQ100EMini,
Resolution.Tick,dataMappingMode = DataMappingMode.OpenInterest, contractDepthOffset=0,
dataNormalizationMode = DataNormalizationMode.Raw, extendedMarketHours=True)
# Set security initializer
seeder = FuncSecuritySeeder(self.GetLastKnownPrices)
self.SetSecurityInitializer(lambda security: seeder.SeedSecurity(security))
# Symbols for securities:
self.lumberSymbol = self._lumberContract.Symbol
self.nasdaqSymbol = self._nasdaqContract.Symbol
# Get 52 Week High and 52 Week Low of Nasdaq
self.nasdaqROCP = self.ROCP(self.nasdaqSymbol,1, Resolution.Daily)
self.nasdaqDailyChange52High = IndicatorExtensions.MAX(self.nasdaqROCP, 252)
self.RegisterIndicator(self.nasdaqSymbol, self.nasdaqDailyChange52High, Resolution.Daily)
self.nasdaqDailyChange52Low = IndicatorExtensions.MIN(self.nasdaqROCP, 252)
self.RegisterIndicator(self.nasdaqSymbol, self.nasdaqDailyChange52Low, Resolution.Daily)
# Warm-Up the algorithm
self.SetWarmup(timedelta(253),resolution=Resolution.Minute)
self.positionCount = 0
self.orderMultiplier = 1
# example for buy orders
self.TARGET_LIMIT_OFFSET = 10
self.STOPLOSS_STOP_OFFSET = 5 # This will be the actual stop loss - this is called the stop price of the stop loss order
self.STOPLOSS_LIMIT_OFFSET = 2 # Maximum allowed below stop loss so its called Limit price of the stop loss
self.targetsCollection = PortfolioTargetCollection()
self.tradesCollection = {}
# Set portifolio consruction model
self.SetPortfolioConstruction(MyPortfolio(self))
# Set risk management model
# self.AddRiskManagement(TrailingStopRiskManagementModel(maximumDrawdownPercent=0.05))
# self.AddRiskManagement(MaximumUnrealizedProfitPercentPerSecurity(maximumUnrealizedProfitPercent = 0.05))
self.AddRiskManagement(NullRiskManagementModel()) # Default
# Set execution model
# self.SetExecution(ImmediateExecutionModel())
self.SetExecution(MyExecution(self))
# Set alpha model
self.alpha= NasdaqAlpha(self)
self.SetAlpha(self.alpha)
def OnData(self, slice: Slice) -> None:
#code to adjust trailing stop loss
for security in slice.Keys:
if security == self.lumberSymbol and security in slice.Ticks :
ticks=slice.Ticks[security]
for tick in ticks:
if tick.TickType == TickType.Trade and len(self.tradesCollection) > 0:
for key in self.tradesCollection.keys():
trade = self.tradesCollection[str(key)]
# can set the argument to pass the current tick price
# for adjustment
response=trade.adjustTrailing()
if response == True:
self.Debug(f"trailing stop loss adjusted at time {self.Time}")
for changed_event in slice.SymbolChangedEvents.Values:
self.Log(f"Contract rollover from {changed_event.OldSymbol} to {changed_event.NewSymbol}")
for key in self.tradesCollection.keys():
ticket = self.Transactions.GetOrderTicket(key)
trade = self.tradesCollection[str(key)]
if ticket.Status == OrderStatus.Submitted:
LimitPrice = ticket.Get(OrderField.LimitPrice)
# To Check if this Ask & Bid Prices are consistent with Tick Data
LatestAsk = self.Securities[ticket.Symbol].AskPrice
LatestBid = self.Securities[ticket.Symbol].BidPrice
# Update LimitPrice if we are Long and Best Bid has Changed
if np.sign(ticket.Quantity * 1) == 1: # Its a buy order
if LimitPrice != LatestBid:
self.Debug(f"Updating order since LatestBid {LatestBid} ≠ LimitPrice {LimitPrice}")
trade.updateMainOrder(round(LatestBid))
# Update LimitPrice if we are Short and Best Ask has Changed
elif np.sign(ticket.Quantity * 1) == -1: # Its a Sell order
if LimitPrice != LatestAsk:
self.Debug(f"Updating order since LatestAsk {LatestAsk} ≠ LimitPrice {LimitPrice}")
trade.updateMainOrder(round(LatestAsk)*0.98)
else:
# self.Debug(f"Not Updating order: LatestAsk:{LatestAsk}, LatestBid:{LatestBid} ,LimitPrice:{LimitPrice}")
pass
# OnEndOfDay notifies when (Time) each security has finished trading for the day
def OnEndOfDay(self, symbol: Symbol) -> None:
# self.Debug(f"Finished Trading on {self.Time} for security {symbol}")
pass
# When your algorithm stops executing, LEAN calls the OnEndOfAlgorithm method.
def OnEndOfAlgorithm(self) -> None:
self.Debug("Printing tradesCollection")
for key,value in self.tradesCollection.items():
self.Debug(f"key:{key}, Value:{value}")
self.Debug("Algorithm done")
# key = orderEvent.OrderId
# order = self.Transactions.GetOrderById(key)
# ticket = self.Transactions.GetOrderTicket(key) # Get Order Ticket
# self.Debug("{} In PreCheck OnOrderEvent: A {} order to {} was {} with quantity:{}, ticketDict {}, OrderType:{}".format(
# self.Time, get_order_type_name(order.Type), get_order_direction_name(order.Direction),
# get_order_status_name(orderEvent.Status), order.Quantity,self.ticketDict.get(key),get_order_type_name(ticket.OrderType)))
# # LimitPrice:{} & StopPrice:{} - , ticket.Get(OrderField.LimitPrice),ticket.Get(OrderField.StopPrice)
# if ticket.Quantity != 0:
# if extractedOrder[0] == 'Main':
# if orderEvent.Status == OrderStatus.Filled:
def OnOrderEvent(self, orderEvent):
ticket=self.Transactions.GetOrderTicket(orderEvent.OrderId)
self.Debug(f"OrderType:{get_order_type_name(ticket.OrderType)},OrderId:{ticket.OrderId},tradesCollection:{self.tradesCollection}")
# If order is main
if ticket.OrderType == OrderType.Limit and str(orderEvent.OrderId) in self.tradesCollection:
# get trade
trade=self.tradesCollection[str(orderEvent.OrderId)]
if ticket.Status == OrderStatus.Filled:
self.Debug("Main Order Filled")
# Calculate TakeProfit and Stop - Limit & Stop price
fillPrice = orderEvent.FillPrice
stopLossStopPrice = fillPrice- np.sign(ticket.Quantity * 1) * self.STOPLOSS_STOP_OFFSET
stopLossLimitPrice = stopLossStopPrice - np.sign(ticket.Quantity * 1) * self.STOPLOSS_LIMIT_OFFSET
takeProfitPrice = fillPrice+ np.sign(ticket.Quantity * 1) * self.TARGET_LIMIT_OFFSET
# Place stoploss order
trade.placeStopLossOrder(-ticket.Quantity,stopLossStopPrice,stopLossLimitPrice,self.order_properties)
# Place Take Profit
trade.placeTakeProfitOrder(-ticket.Quantity,takeProfitPrice,self.order_properties)
elif ticket.Status == OrderStatus.UpdateSubmitted:
self.Debug(f"Order UpdateSubmitted")
pass
elif ticket.Status == OrderStatus.Submitted:
self.Debug(f"Order Submitted")
pass
# If order is Take Profit
elif ticket.OrderType == OrderType.Limit and ticket.Tag in self.tradesCollection:
if ticket.Status == OrderStatus.Filled:
# self.Debug(f"tradesCollection in TakeProfit:{self.tradesCollection}")
self.Debug(f"take profit placed with order_id {ticket.OrderId}")
# get Main trade & Cancel StopLoss as Take Profit Filled
trade=self.tradesCollection[str(ticket.Tag)]
trade.cancelStopLoss()
# If order is StopLoss
elif ticket.OrderType == OrderType.StopLimit:
if ticket.Status == OrderStatus.Filled:
# self.Debug(f"tradesCollection in StopLoss:{self.tradesCollection}")
self.Debug(f"Stop loss placed with order_id={ticket.OrderId}")
# get Main trade & Cancel Take Profit as StopLoss Filled
trade=self.tradesCollection[str(ticket.Tag)]
trade.cancelTakeProfit()
from AlgorithmImports import *
# https://github.com/QuantConnect/Lean/blob/master/Common/Orders/OrderTypes.cs#L87
def get_order_status_name(index):
return {
0: 'New',
1: 'Submitted',
2: 'PartiallyFilled',
3: 'Filled',
4: 'None',
5: 'Canceled',
6: 'None',
7: 'Invalid',
8: 'CancelPending',
9: 'UpdateSubmitted '
}[index]
def get_order_direction_name(index):
return {
0: 'Buy',
1: 'Sell',
2: 'Hold',
}[index]
def get_order_type_name(index):
return {
0: 'Market',
1: 'Limit',
2: 'StopMarket',
3: 'StopLimit',
4: 'MarketOnOpen',
5: 'MarketOnClose',
6: 'OptionExercise',
7: 'LimitIfTouched'
}[index]