Overall Statistics |
Total Trades 23 Average Win 4.44% Average Loss -4.98% Compounding Annual Return 220.812% Drawdown 22.100% Expectancy 0.547 Net Profit 57.695% Sharpe Ratio 3.233 Probabilistic Sharpe Ratio 77.247% Loss Rate 18% Win Rate 82% Profit-Loss Ratio 0.89 Alpha 1.035 Beta 2.709 Annual Standard Deviation 0.461 Annual Variance 0.213 Information Ratio 3.514 Tracking Error 0.377 Treynor Ratio 0.551 Total Fees $505.38 Estimated Strategy Capacity $7100000.00 Lowest Capacity Asset TQQQ UK280CGTCB51 Portfolio Turnover 11.61% |
from AlgorithmImports import * import math import pandas as pd from cmath import sqrt from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Data.Custom import * from QuantConnect.Python import PythonData class IntelligentSkyRodent(QCAlgorithm): def Initialize(self): self.cash = 100000 self.buffer_pct = 0.085 self.SetStartDate(2023, 1, 1) self.SetEndDate(2023, 5, 23) self.SetCash(self.cash) self.equities = ['VCIT', 'UDN','SARK','AMD','FNGU','TSLL','AEHR','MSTR','TARK','XLY','QQQE','VOOG','VOOV','VTV','HIBL','XLK','XLP','SVXY','QID','TBF','TSLA','LQD','VTIP','EDV','STIP','SPTL','IEI','USDU','SQQQ','VIXM','SPXU','QQQ','BSV','TQQQ','SPY','DBC','SHV','IAU','VEA','UTSL','UVXY','UPRO','EFA','EEM','TLT','SHY','GLD','SLV','USO','WEAT','CORN','SH','DRN','PDBC','COMT','KOLD','BOIL','ESPO','PEJ','UGL','URE','VXX','UUP','BND','BIL','DUST','JDST','JNUG','GUSH','DBA','DBB','COM','PALL','AGQ','BAL','WOOD','URA','SCO','UCO','DBO','TAGS','CANE','REMX','COPX','IEF','SPDN','CHAD','DRIP','SPUU','INDL','BRZU','ERX','ERY','CWEB','CHAU','KORU','MEXX','EDZ','EURL','YINN','YANG','TNA','TZA','SPXL','SPXS','MIDU','TYD','TYO','TMF','TMV','TECL','TECS','SOXL','SOXS','LABU','LABD','RETL','DPST','DRV','PILL','CURE','FAZ','FAS','EWA','EWGS','EWG','EWP','EWQ','EWU','EWJ','EWI','EWN','ECC','NURE','VNQI','VNQ','VDC','VIS','VGT','VAW','VPU','VOX','VFH','VHT','VDE','SMH','DIA','UDOW','PSQ','SOXX','VTI','COST','UNH','SPHB','BTAL','VIXY','WEBL','WEBS','UBT','PST','TLH','QLD','SQM','SSO','SD','DGRO','SCHD','SGOL','TIP','DUG','EWZ','TBX','VGIT','VGLT','CCOR','LBAY','NRGD','PHDG','SPHD','COWZ','CTA','DBMF','GDMA','VIGI','AGG','NOBL','FAAR','BITO','FTLS','MORT','FNDX','GLL','NTSX','RWL','VLUE','IJR','SPYG','VXUS','AAL','AEP','AFL','C','CMCSA','DUK','EXC','F','GM','GOOGL','INTC','JNJ','KO','MET','NWE','OXY','PFE','RTX','SNY','SO','T','TMUS','VZ','WFC','WMT','AMZN','MSFT','NVDA','TSM','BA','CB','COKE','FDX','GE','LMT','MRK','NVEC','ORCL','PEP','V','DBE','BRK-B','CRUS','INFY','KMLM','NSYS','SCHG','SGML','SLDP','ARKQ','XLU','XLV','ULTA','AAPL','AMZU','BAD','DDM','IYH','JPM','PM','XOM'] self.MKT = self.AddEquity("QQQ", Resolution.Daily).Symbol self.mkt = [] for equity in self.equities: self.AddEquity(equity, Resolution.Minute) self.Securities[equity].SetDataNormalizationMode(DataNormalizationMode.Adjusted) self.PT2 = 0.98 self.HT199 = 0 self.HT299 = 0 self.HT399 = 0 self.HT499 = 0 self.HT599 = 0 self.HT699 = 0 self.HT99 = 0 self.HTS199 = [] self.HTS299 = [] self.HTS399 = [] self.HTS499 = [] self.HTS599 = [] self.HTS699 = [] self.HTS99 = [] self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 2), self.FunctionBeforeMarketClose) def RSI(self, equity, period): extension = min(period*5, 250) r_w = RollingWindow[float](extension) history = self.History(equity, extension - 1, Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < extension: current_price = self.Securities[equity].Price r_w.Add(current_price) if r_w.IsReady: average_gain = 0 average_loss = 0 gain = 0 loss = 0 for i in range(extension - 1, extension - period -1, -1): gain += max(r_w[i-1] - r_w[i], 0) loss += abs(min(r_w[i-1] - r_w[i], 0)) average_gain = gain/period average_loss = loss/period for i in range(extension - period - 1, 0, -1): average_gain = (average_gain*(period-1) + max(r_w[i-1] - r_w[i], 0))/period average_loss = (average_loss*(period-1) + abs(min(r_w[i-1] - r_w[i], 0)))/period if average_loss == 0: return 100 else: rsi = 100 - (100/(1 + average_gain / average_loss)) return rsi else: return None def CalReturn(self, equity, period): history = self.History(equity, period, Resolution.Daily) closing_prices = pd.Series([bar.Close for bar in history]) current_price = self.Securities[equity].Price closing_prices = closing_prices.append(pd.Series([current_price])) first_price = closing_prices.iloc[0] if first_price == 0: return None else: return_val = (current_price / first_price) - 1 return return_val def STD(self, equity, period): r_w = RollingWindow[float](period + 1) r_w_return = RollingWindow[float](period) history = self.History(equity, period, Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period + 1: current_price = self.Securities[equity].Price r_w.Add(current_price) for i in range (period, 0, -1): daily_return = (r_w[i-1]/r_w[i] - 1) r_w_return.Add(daily_return) dfstd = pd.DataFrame({'r_w_return':r_w_return}) if r_w.IsReady: std = dfstd['r_w_return'].std() if std == 0: return 0 else: return std else: return 0 def MaxDD(self, equity, period): history = self.History(equity, period - 1, Resolution.Daily) closing_prices = pd.Series([bar.Close for bar in history]) current_price = self.Securities[equity].Price closing_prices = closing_prices.append(pd.Series([current_price])) rolling_max = closing_prices.cummax() drawdowns = (rolling_max - closing_prices) / rolling_max max_dd = drawdowns.min() return max_dd def SMA(self, equity, period): r_w = RollingWindow[float](period) history = self.History(equity, period - 1, Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period: current_price = self.Securities[equity].Price r_w.Add(current_price) if r_w.IsReady: sma = sum(r_w) / period return sma else: return 0 def IV(self, equity, period): r_w = RollingWindow[float](period + 1) r_w_return = RollingWindow[float](period) history = self.History(equity, period, Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period + 1: current_price = self.Securities[equity].Price r_w.Add(current_price) for i in range (period, 0, -1): if r_w[i] == 0: return 0 else: daily_return = (r_w[i-1]/r_w[i] - 1) r_w_return.Add(daily_return) dfinverse = pd.DataFrame({'r_w_return':r_w_return}) if r_w.IsReady: std = dfinverse['r_w_return'].std() if std == 0: return 0 else: inv_vol = 1 / std return inv_vol else: return 0 def SMADayRet(self, equity, period): r_w = RollingWindow[float](period + 1) r_w_return = RollingWindow[float](period) history = self.History(equity, period, Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period + 1: current_price = self.Securities[equity].Price r_w.Add(current_price) for i in range (period, 0, -1): if r_w[i] == 0: return None daily_return = (r_w[i-1]/r_w[i] - 1) r_w_return.Add(daily_return) if r_w.IsReady: smareturn = sum(r_w_return) / period return smareturn else: return 0 def EMA(self, equity, period): extension = period + 50 r_w = RollingWindow[float](extension) history = self.History(equity, extension - 1, Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < extension: current_price = self.Securities[equity].Price r_w.Add(current_price) if r_w.IsReady: total_price = 0 for i in range(extension - 1, extension - period - 2, -1): total_price += r_w[i] average_price = total_price/period for i in range(extension - period - 2, -1, -1): average_price = r_w[i]*2/(period+1) + average_price*(1-2/(period+1)) return average_price else: return None def OnData (self, data): pass def FunctionBeforeMarketClose(self): mkt_price = self.History(self.MKT, 2, Resolution.Daily)['close'].unstack(level= 0).iloc[-1] self.mkt.append(mkt_price) mkt_perf = self.cash * self.mkt[-1] / self.mkt[0] self.Plot('Strategy Equity', self.MKT, mkt_perf) self.TQQQFTLT() self.ExecuteTrade() def TQQQFTLT(self): if self.Securities['SPY'].Price > self.SMA('SPY', 200): if self.RSI('TQQQ', 10) > 78: self.HT99 = self.PT2 self.HTS99 = "UVXY" else: if self.RSI('SPXL', 10) > 79: self.HT99 = self.PT2 self.HTS99 = "UVXY" else: if self.CalReturn('TQQQ', 4) > 0.2: if self.RSI('TQQQ', 10) < 31: self.HT99 = self.PT2 self.HTS99 = "TQQQ" else: if self.RSI('UVXY', 10) > self.RSI('SQQQ', 10): self.HT99 = self.PT2 self.HTS99 = "UVXY" else: self.HT99 = self.PT2 self.HTS99 = "SQQQ" else: self.HT99 = self.PT2 self.HTS99 = "TQQQ" else: if self.RSI('TQQQ', 10) < 31: self.HT99 = self.PT2 self.HTS99 = "TECL" else: if self.RSI('SMH', 10) < 30: self.HT99 = self.PT2 self.HTS99 = "SOXL" else: if self.RSI('DIA', 10) < 27: self.HT99 = self.PT2 self.HTS99 = "UDOW" else: if self.RSI('SPY', 14) < 28: self.HT99 = self.PT2 self.HTS99 = "UPRO" else: self.Group1() self.Group2() def Group1(self): if self.CalReturn('QQQ', 200) < -0.2: if self.Securities['QQQ'].Price < self.SMA('QQQ', 20): if self.CalReturn('QQQ', 60) < -0.12: self.Group5() self.Group6() else: if self.RSI('TLT', 10) > self.RSI('SQQQ', 10): self.HT199 = 0.5*self.PT2 self.HTS199 = "TQQQ" else: self.HT199 = 0.5*self.PT2 self.HTS199 = "SQQQ" else: if self.RSI('SQQQ', 10) < 31: self.HT199 = 0.5*self.PT2 self.HTS199 = "PSQ" else: if self.CalReturn('QQQ', 9) > 0.055: self.HT199 = 0.5*self.PT2 self.HTS199 = "PSQ" else: if self.RSI('QQQ', 10) > self.RSI('SMH', 10): self.HT199 = 0.5*self.PT2 self.HTS199 = "QQQ" else: self.HT199 = 0.5*self.PT2 self.HTS199 = "SMH" else: if self.Securities['QQQ'].Price < self.SMA('QQQ', 20): if self.RSI('TLT', 10) > self.RSI('SQQQ', 10): self.HT199 = 0.5*self.PT2 self.HTS199 = "TQQQ" else: self.HT199 = 0.5*self.PT2 self.HTS199 = "SQQQ" else: if self.RSI('SQQQ', 10) < 31: self.HT199 = 0.5*self.PT2 self.HTS199 = "SQQQ" else: if self.CalReturn('QQQ', 9) > 0.055: self.HT199 = 0.5*self.PT2 self.HTS199 = "SQQQ" else: if self.RSI('TQQQ', 10) > self.RSI('SOXL', 10): self.HT199 = 0.5*self.PT2 self.HTS199 = "TQQQ" else: self.HT199 = 0.5*self.PT2 self.HTS199 = "SOXL" def Group2(self): if self.Securities['QQQ'].Price < self.SMA('QQQ', 20): if self.CalReturn('QQQ', 60) < -0.12: self.Group3() self.Group4() else: if self.RSI('TLT', 10) > self.RSI('SQQQ', 10): self.HT299 = 0.5*self.PT2 self.HTS299 = "TQQQ" else: self.HT299 = 0.5*self.PT2 self.HTS299 = "SQQQ" else: if self.RSI('SQQQ', 10) < 31: for equity in self.equities: if not equity == "SQQQ" and self.Portfolio[equity].HoldStock: self.Liquidate(equity) self.HT299 = 0.5*self.PT2 self.HTS299 = "SQQQ" else: if self.CalReturn('QQQ', 70) < -0.15: if self.RSI('TQQQ', 10) > self.RSI('SOXL', 10): self.HT299 = 0.5*self.PT2 self.HTS299 = "TQQQ" else: self.HT299 = 0.5*self.PT2 self.HTS299 = "SOXL" else: equities = ["SPY", "QQQ", "DIA", "XLP"] returns = {} for equity in equities: returns[equity] = self.CalReturn(equity, 14) s_e = sorted([item for item in returns.items() if item[1] is not None], key=lambda x: x[1], reverse=True) top_2_equities = s_e[0] self.HT299 = 0.5*self.PT2 self.HTS299 = top_2_equities[0] def Group3(self): if self.Securities['SPY'].Price > self.SMA('SPY', 20): self.HT399 = 0.25*self.PT2 self.HTS399 = "SPY" else: if self.RSI('TLT', 10) > self.RSI('SQQQ', 10): self.HT399 = 0.25*self.PT2 self.HTS399 = "QQQ" else: self.HT399 = 0.25*self.PT2 self.HTS399 = "PSQ" def Group4(self): if self.RSI('TLT', 10) > self.RSI('SQQQ', 10): self.HT499 = 0.25*self.PT2 self.HTS499 = "QQQ" else: self.HT499 = 0.25*self.PT2 self.HTS499 = "PSQ" def Group5(self): if self.Securities['SPY'].Price > self.SMA('SPY', 20): self.HT599 = 0.25*self.PT2 self.HTS599 = "SPY" else: if self.RSI('TLT', 10) > self.RSI('SQQQ', 10): self.HT599 = 0.25*self.PT2 self.HTS599 = "QQQ" else: self.HT599 = 0.25*self.PT2 self.HTS599 = "PSQ" def Group6(self): if self.RSI('TLT', 10) > self.RSI('SQQQ', 10): self.HT699 = 0.25*self.PT2 self.HTS699 = "QQQ" else: self.HT699 = 0.25*self.PT2 self.HTS699 = "PSQ" def ExecuteTrade(self): group99 = { 'HTS': [self.HTS99, self.HTS199, self.HTS299, self.HTS399, self.HTS499, self.HTS599, self.HTS699], 'HT': [self.HT99, self.HT199, self.HT299, self.HT399, self.HT499, self.HT599, self.HT699] } df99 = pd.DataFrame(group99) df = pd.concat([df99]) df['HTS'] = df['HTS'].astype(str) result = df.groupby(['HTS']).sum().reset_index() for equity in self.equities: if all(not pd.isnull(result.iloc[i, 0]) and not equity == result.iloc[i, 0] for i in range(len(result))): if self.Portfolio[equity].HoldStock: self.Liquidate(equity) output = "*****" for i in range(len(result)): if result.iloc[i, 0]: percentage = round(result.iloc[i, 1] * 100, 2) output += "{}: {}% - ".format(result.iloc[i, 0], percentage) output = output.rstrip(" - ") self.Log(output) for i in range(len(result)): if not result.iloc[i, 1] == 0 and not result.iloc[i, 0] == 'BIL': percentage_equity = self.Portfolio[result.iloc[i, 0]].HoldingsValue / self.Portfolio.TotalPortfolioValue if result.iloc[i, 1] < percentage_equity and abs(result.iloc[i, 1] / percentage_equity - 1) > self.buffer_pct: self.SetHoldings(result.iloc[i, 0], result.iloc[i, 1]) else: pass for i in range(len(result)): if not result.iloc[i, 1] == 0 and not result.iloc[i, 0] == 'BIL': percentage_equity = self.Portfolio[result.iloc[i, 0]].HoldingsValue / self.Portfolio.TotalPortfolioValue if result.iloc[i, 1] > percentage_equity and abs(percentage_equity / result.iloc[i, 1] - 1) > self.buffer_pct: self.SetHoldings(result.iloc[i, 0], result.iloc[i, 1]) else: pass self.HT199 = 0 self.HT299 = 0 self.HT399 = 0 self.HT499 = 0 self.HT599 = 0 self.HT699 = 0 self.HT99 = 0 self.HTS199 = [] self.HTS299 = [] self.HTS399 = [] self.HTS499 = [] self.HTS599 = [] self.HTS699 = [] self.HTS99 = []