Created with Highcharts 12.1.2EquityJan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025020k40k-50-25000.250.50120250M500M01M455055
Overall Statistics
Total Orders
54
Average Win
16.33%
Average Loss
-6.46%
Compounding Annual Return
15.793%
Drawdown
34.000%
Expectancy
0.569
Start Equity
10000
End Equity
21092.00
Net Profit
110.920%
Sharpe Ratio
0.44
Sortino Ratio
0.325
Probabilistic Sharpe Ratio
9.025%
Loss Rate
56%
Win Rate
44%
Profit-Loss Ratio
2.53
Alpha
0.078
Beta
0.549
Annual Standard Deviation
0.288
Annual Variance
0.083
Information Ratio
0.132
Tracking Error
0.282
Treynor Ratio
0.23
Total Fees
$90.99
Estimated Strategy Capacity
$150000000.00
Lowest Capacity Asset
TQQQ UK280CGTCB51
Portfolio Turnover
2.90%
# region imports
from AlgorithmImports import *
# endregion
import importlib

# Set the strategy name (must match file and class name exactly)
STRATEGY_NAME = "breakoutsmacrossoverstrategy"  # Matches file: BreakoutRSIStrategy.py and class: BreakoutRSIStrategy

# Convert file name to lowercase for import
strategy_module = importlib.import_module(f"strategies.{STRATEGY_NAME.lower()}")

# Get the strategy class (same as STRATEGY_NAME)
strategy_class_name = STRATEGY_NAME  

# Retrieve the strategy class dynamically
StrategyClass = getattr(strategy_module, strategy_class_name)

# Inherit and run the selected strategy
class Main(StrategyClass):
    def Initialize(self):
        super().Initialize()  # Call the selected strategy's Initialize method
# region imports
from AlgorithmImports import *
# endregion

# Your New Python File
from AlgorithmImports import *

class breakoutrsistrategy(QCAlgorithm):
    def Initialize(self):
        self.SetStartDate(2020, 1, 1)
        self.SetEndDate(2025, 2, 1)
        self.SetCash(10000)
        
        # Select stock
        self.symbol = self.AddEquity("SMH", Resolution.Daily).Symbol
        
        # Breakout settings
        self.breakout_period = 10
        self.breakdown_period = 5
        self.rsi = self.RSI(self.symbol, 14, MovingAverageType.Wilders, Resolution.Daily)
        self.highs = RollingWindow[float](self.breakout_period)
        self.lows = RollingWindow[float](self.breakdown_period)
        self.entry_price = 0
        self.stop_loss_pct = 0.05
        
        # Warm up the algorithm until all indicators are ready
        self.SetWarmUp(self.breakout_period)

    def OnData(self, data):
        if not data.ContainsKey(self.symbol) or self.IsWarmingUp:
            return

        # Update high/low rolling windows
        self.highs.Add(self.Securities[self.symbol].High)
        self.lows.Add(self.Securities[self.symbol].Low)

        if not self.highs.IsReady or not self.lows.IsReady or not self.rsi.IsReady:
            return

        # Get breakout and RSI values
        high_breakout = max(list(self.highs)[1:])
        low_breakout = min(list(self.lows)[1:])
        current_price = self.Securities[self.symbol].Close
        rsi_value = self.rsi.Current.Value

        # Buy when RSI is above 50 and price breaks above previous highs
        if rsi_value > 50 and not self.Portfolio.Invested and current_price > high_breakout:
            self.SetHoldings(self.symbol, 1)
            self.entry_price = current_price
            self.Debug(f"BUY at {current_price} - {self.Time} | RSI: {rsi_value}")

        # Sell if price breaks below previous lows or falls below stop-loss level
        elif self.Portfolio.Invested and (current_price < low_breakout or current_price < self.entry_price * (1 - self.stop_loss_pct)):
            self.Liquidate(self.symbol)
            self.Debug(f"SELL at {current_price} - {self.Time} | RSI: {rsi_value}")
from AlgorithmImports import *

class breakoutsmacrossoverstrategy(QCAlgorithm):
    def Initialize(self):
        # Set backtest period
        self.SetStartDate(2020, 1, 1)
        self.SetEndDate(2025, 2, 1)
        
        # Set initial capital
        self.SetCash(10000)
        
        # Select stock
        self.symbol = self.AddEquity("TQQQ", Resolution.Daily).Symbol
        
        # Define breakout periods
        self.breakout_period = 10
        self.breakdown_period = 10
        
        # Create 50 and 150 period SMAs
        self.sma50 = self.SMA(self.symbol, 50, Resolution.Daily)
        self.sma150 = self.SMA(self.symbol, 150, Resolution.Daily)
        
        # Track highest high and lowest low using rolling windows
        self.highs = RollingWindow[float](self.breakout_period)
        self.lows = RollingWindow[float](self.breakdown_period)
        
        # Store entry price for stop-loss
        self.entry_price = 0
        self.stop_loss_pct = 0.05
        
        # Use the longer period for warmup (150 days)
        self.SetWarmUp(150)

    def OnData(self, data):
        # Ensure data for our symbol is available and we are not warming up
        if not data.ContainsKey(self.symbol) or self.IsWarmingUp:
            return
        
        # Add the latest high and low to the rolling windows
        self.highs.Add(self.Securities[self.symbol].High)
        self.lows.Add(self.Securities[self.symbol].Low)
        
        # Ensure our rolling windows and SMA indicators are ready
        if not self.highs.IsReady or not self.lows.IsReady or not self.sma50.IsReady or not self.sma150.IsReady:
            return

        # Get breakout levels (excluding today's high/low)
        high_breakout = max(list(self.highs)[1:])
        low_breakout = min(list(self.lows)[1:])
        current_price = self.Securities[self.symbol].Close

        # ENTRY CONDITION:
        # Only take long trades if 50 SMA is above 150 SMA and there's a breakout above the recent high
        if not self.Portfolio.Invested and self.sma50.Current.Value > self.sma150.Current.Value and current_price > high_breakout:
            self.SetHoldings(self.symbol, 1)  # Invest 100% of portfolio
            self.entry_price = current_price  # Record entry price for stop-loss calculation
            self.Debug(f"BUY at {current_price} - {self.Time} | SMA50: {self.sma50.Current.Value}, SMA150: {self.sma150.Current.Value}")

        # EXIT CONDITION:
        # Exit if current price drops below the recent low breakout,
        # hits the stop-loss, or if the SMA crossover turns bearish (50 SMA falls below 150 SMA)
        elif self.Portfolio.Invested and (current_price < low_breakout or current_price < self.entry_price * (1 - self.stop_loss_pct) or self.sma50.Current.Value < self.sma150.Current.Value):
            self.Liquidate(self.symbol)
            self.Debug(f"SELL at {current_price} - {self.Time} | SMA50: {self.sma50.Current.Value}, SMA150: {self.sma150.Current.Value}")
from AlgorithmImports import *

class SMACrossoverStrategy(QCAlgorithm):
    def Initialize(self):
        # Set backtest period
        self.SetStartDate(2020, 1, 1)
        self.SetEndDate(2025, 2, 1)
        
        # Set initial capital
        self.SetCash(10000)
        
        # Select stock
        self.symbol = self.AddEquity("SMH", Resolution.Daily).Symbol
        
        # Create 50 and 150 period SMAs
        self.sma50 = self.SMA(self.symbol, 50, Resolution.Daily)
        self.sma150 = self.SMA(self.symbol, 150, Resolution.Daily)
        
        # Warm up the algorithm until both SMAs are ready
        self.SetWarmUp(150)

    def OnData(self, data):
        # Ensure we have data for our symbol
        if not data.ContainsKey(self.symbol):
            return
        
        # Do not trade until warmup is complete
        if self.IsWarmingUp:
            return

        # Check that our indicators are ready
        if not self.sma50.IsReady or not self.sma150.IsReady:
            return

        current_price = self.Securities[self.symbol].Close

        # Check for a bullish crossover:
        # If not invested and the 50 SMA is above the 150 SMA, go long
        if not self.Portfolio.Invested and self.sma50.Current.Value > self.sma150.Current.Value:
            self.SetHoldings(self.symbol, 1)  # Invest 100% of portfolio in the stock
            self.Debug(f"BUY at {current_price} - {self.Time}")

        # Check for a bearish crossover:
        # If already invested and the 50 SMA falls below the 150 SMA, liquidate the position
        elif self.Portfolio.Invested and self.sma50.Current.Value < self.sma150.Current.Value:
            self.Liquidate(self.symbol)
            self.Debug(f"SELL at {current_price} - {self.Time}")