Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from datetime import date class LexxHelp(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2013, 12, 31) #Set Start Date self.SetEndDate(2015, 1, 1) #Set End Date self.SetCash(100000) #Set Strategy Cash #self.current_month = 12 # what resolution should the data *added* to the universe be? self.UniverseSettings.Resolution = Resolution.Daily # An indicator(or any rolling window) needs data(updates) to have a value, doesnt help due to monthly selection? #self.UniverseSettings.MinimumTimeInUniverse = 10 #self.SetWarmUp(10+1) # this add universe method accepts two parameters: self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) # Set dictionary of indicators self.indicators = {} # Set a list of the selected universe self.universe = [] self.__numberOfSymbols = 50 self.__numberOfSymbolsFine = 10 #self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol def OnData(self, data): # This updates the indicators at each data step(based on resolution) for symbol in self.universe: # is symbol iin Slice object? (do we even have data on this step for this asset) if not data.ContainsKey(symbol): continue # 686 | 13:35:43: Runtime Error: Python.Runtime.PythonException: AttributeError : 'NoneType' object has no attribute 'Price' if data[symbol] is None: continue # Does this slice have the price data we need at this moment? if data[symbol].Price is None: continue # Either create a new indicator, or update one we already have if symbol not in self.indicators: self.indicators[symbol] = SymbolData(symbol, self) self.indicators[symbol].update_value(self.Time, data[symbol].Price) # We are warming up the indicators, cannot trade or other stuff if self.IsWarmingUp: continue # now you can use logic to trade, random example: lowerband = self.indicators[symbol].bb_10.LowerBand.Current.Value upperband = self.indicators[symbol].bb_10.UpperBand.Current.Value # Log the symbol, price & indicators. self.Log("{0}\tPrice : {1:0.2f}\tUPPERBAND : {2:0.2f}\tLOWERBAND : {3:0.2f}".format(symbol, data[symbol].Price, upperband, lowerband)) # SLOW, but used to generate some trades. #ma = self.History(symbol, 10).close.mean() # current price: self.Securities[symbol].Price or data[symbol].Price if self.Securities[symbol].Price < lowerband: #self.SetHoldings(symbol, -0.99/float(len(self.universe))) self.SetHoldings(symbol, 0.1) elif self.Securities[symbol].Price > upperband: #self.SetHoldings(symbol, 0.99/float(len(self.universe))) self.Liquidate(symbol) # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # Attempt to only try rebalance quarterly on the 1st day of the month today = self.Time self.Log("Day = {} Month = {}".format(today.day,today.month)) if today.day == 1 and (today.month == 1 or today.month == 4 or today.month == 7 or today.month == 10): sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] else: return self.universe # sort descending by daily dollar volume #sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # return the symbol objects of the top entries from our sorted collection #return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' def FineSelectionFunction(self, fine): # Attempt to only try rebalance quarterly on the 1st day of the month today = self.Time if today.day == 1 and (today.month == 1 or today.month == 4 or today.month == 7 or today.month == 10): sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.FCFYield, reverse=True) result = [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ] return self.universe else: return self.universe # sort descending by P/E ratio #sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.FCFYield, reverse=True) # resulting symbols #result = [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ] # Only update our universes on a new month? Not sure I like this hack, might work better in coarse to save more resources? #if self.current_month != self.Time.month: #self.Log(str(self.Time.month)+ " : " +str(len(result))) # self.current_month = self.Time.month # self.universe = result # return result #else: #return self.universe # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): # liquidate removed securities for security in changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) # clean up del self.indicators[security.Symbol] class SymbolData(object): def __init__(self, symbol, context): self.symbol = symbol """ I had to pass ATR from outside object to get it to work, could pass context and use any indica var atr = ATR(Symbol symbol, int period, MovingAverageType type = null, Resolution resolution = null, Func`2[Data.IBaseData,Data.Market.IBaseDataBar] selector = null) """ #self.ema = context.EMA(symbol, self.window) #self.indicator = context.BB(symbol, self.window) self.bb_10 = context.BB(symbol,12,1,MovingAverageType.Simple,Resolution.Daily) #self.bb_10 = context.BollingerBands(symbol,5,1,MovingAverageType.Simple) #self.indicator2 = context.BB(symbol,20,1,MovingAverageType.Simple,Resolution.Daily) """ Runtime Error: Python.Runtime.PythonException: NotSupportedException : AverageTrueRange does not support Update(DateTime, decimal) method overload. Use Update(IBaseDataBar) instead. """ #def update_bar(self, bar): # self.atr.Update(bar) def update_value(self, time, value): self.bb_10.Update(time, value)
class CoarseFineFundamentalATRComboAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2014, 1, 1) #Set Start Date self.SetEndDate(2014, 6, 1) #Set End Date self.SetCash(50000) #Set Strategy Cash # what resolution should the data *added* to the universe be? self.UniverseSettings.Resolution = Resolution.Daily # An indicator(or any rolling window) needs data(updates) to have a value self.atr_window = 20 self.UniverseSettings.MinimumTimeInUniverse = self.atr_window self.SetWarmUp(self.atr_window) # this add universe method accepts two parameters: self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) #self.flag1 = 1 # variable to control the monthly rebalance of coarse and fine selection function # Set dictionary of indicators self.indicators = {} # Set a list of the selected universe self.universe=[] self.__numberOfSymbols = 200 self.__numberOfSymbolsFine = 10 self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol #self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY", 10), Action(self.CoarseSelectionFunction)) # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # sort descending by daily dollar volume sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # return the symbol objects of the top entries from our sorted collection return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' def FineSelectionFunction(self, fine): # sort descending by P/E ratio sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.FCFYield, reverse=True) # resulting symbols self.universe = [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ] # take the top entries from our sorted collection return self.universe def OnData(self, data): # Return before trying to run a loop on empty list #if not self.universe: # return for symbol in self.universe: # is symbol in Slice object? (do we even have data on this step for this asset) #if not data.ContainsKey(symbol): # return #self.indicators[symbol].update_value(self.Time, data[symbol].Price) #continue if self.IsWarmingUp: continue if data.ContainsKey(symbol): self.indicators[symbol].update_value(self.Time, data[symbol].Price) #else: # continue # new symbol? setup indicator object. Then update if symbol not in self.indicators: self.indicators[symbol] = SymbolData(symbol, self, self.atr_window) # update by bar #self.indicators[symbol].update_bar(data[symbol]) #update by value #self.indicators[symbol].update_value(self.Time, data[symbol].Price) # now you can use logic to trade, random example: lowerband = self.indicators[symbol].get_atr() upperband = self.indicators[symbol].get_atr2() # Log the symbol, price & indicators self.Log(str(symbol) + " : " + str(self.indicators[symbol].get_atr())) self.Log("PRICE : {}".format(str(self.Securities[symbol].Price))) self.Log("UPPERBAND : {}".format(str(lowerband))) self.Log("LOWERBAND : {}".format(str(lowerband))) # Trading Indicators if lowerband != 0.0: if not self.Portfolio[symbol].HoldStock: if float(self.Securities[symbol].Price) < lowerband: self.SetHoldings(symbol, 0.02) elif self.Portfolio[symbol].HoldStock: if float(self.Securities[symbol].Price) > upperband: self.Liquidate(symbol) # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): # liquidate removed securities for security in changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) # clean up del self.indicators[security.Symbol] class SymbolData(object): def __init__(self, symbol, context, window): self.symbol = symbol """ I had to pass ATR from outside object to get it to work, could pass context and use any indica var atr = ATR(Symbol symbol, int period, MovingAverageType type = null, Resolution resolution = null, Func`2[Data.IBaseData,Data.Market.IBaseDataBar] selector = null) """ self.window = window #self.indicator = context.EMA(symbol, self.window) #self.indicator = context.BB(symbol, self.window) self.indicator = context.BollingerBands(symbol,12,2,MovingAverageType.Simple) self.indicator2 = context.BollingerBands(symbol,12,1,MovingAverageType.Simple) self.atr = 0.0 """ Runtime Error: Python.Runtime.PythonException: NotSupportedException : AverageTrueRange does not support Update(DateTime, decimal) method overload. Use Update(IBaseDataBar) instead. """ def update_bar(self, bar): self.indicator.Update(bar) def update_value(self, time, value): self.indicator.Update(time, value) def get_atr(self): #return self.indicator.Current.Value return self.indicator.LowerBand.Current.Value def get_atr2(self): #return self.indicator.Current.Value return self.indicator2.UpperBand.Current.Value