Overall Statistics |
Total Orders 6872 Average Win 0.05% Average Loss -0.05% Compounding Annual Return -0.739% Drawdown 6.400% Expectancy -0.016 Start Equity 100000 End Equity 96653.29 Net Profit -3.347% Sharpe Ratio -0.54 Sortino Ratio -0.637 Probabilistic Sharpe Ratio 0.147% Loss Rate 50% Win Rate 50% Profit-Loss Ratio 0.99 Alpha -0.017 Beta 0.01 Annual Standard Deviation 0.03 Annual Variance 0.001 Information Ratio -0.837 Tracking Error 0.108 Treynor Ratio -1.705 Total Fees $6796.41 Estimated Strategy Capacity $1000.00 Lowest Capacity Asset FMI VK7WZY1YHPB9 Portfolio Turnover 1.05% |
#region imports from AlgorithmImports import * from collections import deque #endregion # https://quantpedia.com/Screener/Details/155 class MomentumReversalCombinedWithVolatility(QCAlgorithm): def initialize(self): self.set_start_date(2014, 1, 1) # Set Start Date self.set_end_date(2018, 8, 1) # Set Start Date self.set_cash(100000) # Set Strategy Cash self.set_security_initializer(BrokerageModelSecurityInitializer( self.brokerage_model, FuncSecuritySeeder(self.get_last_known_prices))) self.universe_settings.resolution = Resolution.DAILY self.add_universe(self._coarse_selection_function, self._fine_selection_function) self._data_dict = {} # 1/6 of the portfolio is rebalanced every month self._portfolios = deque(maxlen=6) spy = Symbol.create("SPY", SecurityType.EQUITY, Market.USA) self.schedule.on(self.date_rules.month_start(spy), self.time_rules.after_market_open(spy), self._rebalance) # the lookback period for volatility and return is six months self._lookback = 20*6 self._filtered_fine = None self._monthly_rebalance = False self.set_warm_up(self._lookback) def _coarse_selection_function(self, coarse): # update the price of stocks in universe everyday for i in coarse: if i.symbol not in self._data_dict: self._data_dict[i.symbol] = SymbolData(self._lookback) self._data_dict[i.symbol].update(i.adjusted_price) if self._monthly_rebalance: # drop stocks which have no fundamental data or have too low prices return [x.symbol for x in coarse if (x.has_fundamental_data) and (float(x.price) > 5)] else: return [] def _fine_selection_function(self, fine): if self._monthly_rebalance: sorted_fine = sorted(fine, key=lambda x: x.earning_reports.basic_average_shares.value * self._data_dict[x.symbol].price, reverse=True) # select stocks with large size top_fine = sorted_fine[:int(0.5*len(sorted_fine))] self._filtered_fine = [x.symbol for x in top_fine] return self._filtered_fine else: return [] def _rebalance(self): self._monthly_rebalance = True def on_data(self, data): if self._monthly_rebalance and self._filtered_fine and not self.is_warming_up: filtered_data = {symbol: symbolData for (symbol, symbolData) in self._data_dict.items() if symbol in self._filtered_fine and symbolData.is_ready() and symbol in data.bars} self._filtered_fine = None self._monthly_rebalance = False # if the dictionary is empty, then return if len(filtered_data) < 100: return # sort the universe by volatility and select stocks in the top high volatility quintile sorted_by_vol = sorted(filtered_data.items(), key=lambda x: x[1].volatility(), reverse=True)[:int(0.2*len(filtered_data))] sorted_by_vol = dict(sorted_by_vol) # sort the stocks in top-quintile by realized return sorted_by_return = sorted(sorted_by_vol, key=lambda x: sorted_by_vol[x].return_(), reverse=True) long_ = sorted_by_return[:int(0.2*len(sorted_by_return))] short = sorted_by_return[-int(0.2*len(sorted_by_return)):] self._portfolios.append(short + long_) # 1/6 of the portfolio is rebalanced every month if len(self._portfolios) == self._portfolios.maxlen: for i in list(self._portfolios)[0]: self.liquidate(i) # stocks are equally weighted and held for 6 months short_weight = 1/len(short) for i in short: self.set_holdings(i, -1/6*short_weight) long_weight = 1/len(long_) for i in long_: self.set_holdings(i, 1/6*long_weight) class SymbolData: def __init__(self, lookback): self.price = None self._history = deque(maxlen=lookback) def update(self, value): # update yesterday's close price self.price = value # update the history price series self._history.append(float(value)) def is_ready(self): return len(self._history) == self._history.maxlen def volatility(self): # one week (5 trading days) prior to the beginning of each month is skipped prices = np.array(self._history)[:-5] returns = (prices[1:]-prices[:-1])/prices[:-1] # calculate the annualized realized volatility return np.std(returns)*np.sqrt(250/len(returns)) def return_(self): # one week (5 trading days) prior to the beginning of each month is skipped prices = np.array(self._history)[:-5] # calculate the annualized realized return return (prices[-1]-prices[0])/prices[0]