Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return -100.000% Drawdown 10.200% Expectancy 0 Net Profit -10.242% Sharpe Ratio -2.07 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -5.297 Beta -79.239 Annual Standard Deviation 0.483 Annual Variance 0.233 Information Ratio -1.934 Tracking Error 0.489 Treynor Ratio 0.013 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset BTC.Bitcoin 2S |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### <summary> ### Demonstration of using an external custom datasource. LEAN Engine is incredibly flexible and allows you to define your own data source. ### This includes any data source which has a TIME and VALUE. These are the *only* requirements. To demonstrate this we're loading in "Bitcoin" data. ### </summary> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="custom data" /> ### <meta name="tag" content="crypto" /> class CustomDataBitcoinAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 9, 12) self.SetEndDate(2019, 9, 15) self.SetCash(100000) # Define the symbol and "type" of our generic data: self.btc = self.AddData(Bitcoin, "BTC").Symbol def OnData(self, data): if not data.ContainsKey(self.btc): return strike = data[self.btc].GetProperty('strike') # If we don't have any weather "SHARES" -- invest" if not self.Portfolio.Invested: # Weather used as a tradable asset, like stocks, futures etc. # It's only OK to use SetHoldings with crypto when using custom data. When trading with built-in crypto data, # use the cashbook. Reference https://github.com/QuantConnect/Lean/blob/master/Algorithm.Python/BasicTemplateCryptoAlgorithm.py self.SetHoldings(self.btc, 1) self.Debug("Buying BTC 'Shares': BTC: {0}".format(strike)) self.Debug("Time: {0} {1}".format(datetime.now(), strike)) class Bitcoin(PythonData): '''Custom Data Type: Bitcoin data from Quandl - http://www.quandl.com/help/api-for-bitcoin-data''' def GetSource(self, config, date, isLiveMode): return SubscriptionDataSource("https://www.dropbox.com/s/qt3a9np8yttsxma/orats%20reduced%20strikes%20with%20changed%20date%20format.CSV?dl=1", SubscriptionTransportMedium.RemoteFile) def Reader(self, config, line, date, isLiveMode): coin = Bitcoin() coin.Symbol = config.Symbol # skip the header if all([not x.isdigit() for x in line]): return None data = line.split(',') coin.Time = datetime.strptime(data[1], "%Y-%m-%d") coin.EndTime = coin.Time + timedelta(days=1) coin.Value = data[14] # coin["Open"] = float(data[1]) # coin["High"] = float(data[2]) # coin["Low"] = float(data[3]) coin["strike"] = float(data[4]) # coin["VolumeBTC"] = float(data[5]) # coin["VolumeUSD"] = float(data[6]) # coin["WeightedPrice"] = float(data[7]) return coin