Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from clr import AddReference # .NET Common Language Runtime (CLR) <- http://pythonnet.github.io/ AddReference("System") AddReference("QuantConnect.Algorithm") # to load an assembly use AddReference AddReference("QuantConnect.Common") from System import * # CLR namespaces to be treatedas Python packages from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Python import PythonQuandl # quandl data not CLOSE from QuantConnect.Python import PythonData # custom data import numpy as np; import pandas as pd from datetime import datetime, timedelta import decimal ### <summary> ### Basic template algorithm simply initializes the date range and cash. This is a skeleton ### framework you can use for designing an algorithm. ### </summary> class YahooData(PythonData): def GetSource(self, config, date, isLiveMode): url = "https://www.dropbox.com/s/glt460qzmr63dns/SPYtoDropBox.csv?dl=1" return SubscriptionDataSource(url, SubscriptionTransportMedium.RemoteFile) def Reader(self, config, line, date, isLiveMode): if not(line.strip() and line[0].isdigit()): return index = YahooData(); try: data = line.split(',') date = data[0].split('/') index.Time = datetime(int(date[2]), int(date[0]), int(date[1])) index.Price = float(data[5]) index["Open"] = float(data[1]) index["High"] = float(data[2]) index["Low"] = float(data[3]) index["Close"] = float(data[4]) index["AdjClose"] = float(data[5]) index["Volume"] = float(data[6]) except ValueError: return None return index class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2017,1, 7) #Set Start Date self.SetEndDate(2018,4,5) #Set End Date self.SetCash(100000) #Set Strategy Cash self.AddData(YahooData, "MYSPY") self.Debug("numpy test >>> print numpy.pi: " + str(np.pi)) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' self.Debug("1")