Overall Statistics |
Total Trades 480 Average Win 3.10% Average Loss -0.68% Compounding Annual Return 29.352% Drawdown 18.000% Expectancy 1.870 Net Profit 2805.140% Sharpe Ratio 1.843 Probabilistic Sharpe Ratio 98.529% Loss Rate 48% Win Rate 52% Profit-Loss Ratio 4.55 Alpha 0.302 Beta 0.091 Annual Standard Deviation 0.17 Annual Variance 0.029 Information Ratio 0.77 Tracking Error 0.252 Treynor Ratio 3.451 Total Fees $9814.27 |
""" SEL(stock selection part) SPY or QQQ I/O(in & out part) Option 1: The In & Out algo Based on the 'In & Out' strategy introduced by Peter Guenther, 4 Oct 2020 expanded/inspired by Tentor Testivis, Dan Whitnable (Quantopian), Vladimir, Thomas Chang, Mateusz Pulka, Derek Melchin (QuantConnect), Nathan Swenson, Goldie Yalamanchi, and Sudip Sil https://www.quantopian.com/posts/new-strategy-in-and-out https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/p1 Option 2: The Distilled Bear in & out algo based on Dan Whitnable's 22 Oct 2020 algo on Quantopian. Dan's original notes: "This is based on Peter Guenther great “In & Out” algo. Included Tentor Testivis recommendation to use volatility adaptive calculation of WAIT_DAYS and RET. Included Vladimir's ideas to eliminate fixed constants Help from Thomas Chang" https://www.quantopian.com/posts/new-strategy-in-and-out https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/ """ from QuantConnect.Data.UniverseSelection import * import math import numpy as np import pandas as pd import scipy as sp import operator class InOut_DBear(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 1) #Set Start Date #self.SetEndDate(2008, 2, 1) #Set End Date self.cap = 100000 self.SetCash(self.cap) res = Resolution.Hour ##### Stock/Bond selection parameters ##### EQY_VEC = ['QQQ'] self.EQY_VEC = [] cntr = 1 for i in EQY_VEC: exec(f'self.EQY{cntr} = self.AddEquity("{i}", Resolution.Hour).Symbol') exec(f'self.EQY_VEC.append(self.EQY{cntr})') cntr += 1 ALT_VEC = ['TLT'] self.ALT_VEC = [] cntr = 1 for i in ALT_VEC: exec(f'self.ALT{cntr} = self.AddEquity("{i}", Resolution.Hour).Symbol') exec(f'self.ALT_VEC.append(self.ALT{cntr})') cntr += 1 self.holdings_quants = dict.fromkeys(self.EQY_VEC+self.ALT_VEC, 0) self.eqy_sel = []; self.alt_sel = [] self.mom_lookback = 126 ##### In & Out parameters ##### # Feed-in constants self.INI_WAIT_DAYS = 15 # out for 3 trading weeks # Market and list of signals based on ETFs self.MRKT = self.AddEquity('SPY', res).Symbol # market self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials) self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals) self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res) self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield) self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD) self.GOLD = self.AddEquity('GLD', res).Symbol # gold self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver self.INFL = self.AddEquity('RINF', res).Symbol # disambiguate GPLD/SLVA pair via inflaction expectations self.TIPS = self.AddEquity('TIP', res).Symbol # disambiguate GPLD/SLVA pair via inflaction expectations; Treasury Yield = TIPS Yield + Expected Inflation self.UTIL = self.AddEquity('XLU', res).Symbol # utilities self.INDU = self.PRDC # vs industrials self.SHCU = self.AddEquity('FXF', res).Symbol # safe haven currency (CHF) self.RICU = self.AddEquity('FXA', res).Symbol # vs risk currency (AUD) self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.SHCU, self.RICU, self.TIPS, self.INFL] self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.DEBT, self.USDX] self.pairlist = ['G_S', 'U_I', 'SC_RC'] # Initialize variables ## 'In'/'out' indicator self.be_in_inout = 1; self.be_in_inout_prior = 0 ## Day count variables self.dcount = 0 # count of total days since start self.outday_inout = (-self.INI_WAIT_DAYS+1) # setting ensures universe updating at algo start ## Flexi wait days self.WDadjvar = self.INI_WAIT_DAYS self.waitdays_inout = self.INI_WAIT_DAYS ## For inflation gauge self.debt1st = [] self.tips1st = [] ##### Distilled Bear parameters (note: shares signals with In & Out) ##### self.DISTILLED_BEAR = 1 self.VOLA_LOOKBACK = 126 self.WAITD_CONSTANT = 85 self.waitdays_dbear = self.INI_WAIT_DAYS self.be_in_dbear = 1; self.be_in_dbear_prior = 0 self.outday_dbear = (-self.INI_WAIT_DAYS+1) ##### For comparing the in & out algos returns ##### self.weight_inout_vs_dbear = 1 #weight determined via returns comparison; 1(fully In&Out) <--> 0(fully DistilledBear) self.io_mom_lookback = 10 #compare returns of in & outs in past X days self.setrebalancefreq = 1 #rebalance every X days according to new in & outs weighting self.symbols = None self.reb_count = 0 #save day count of last rebalancing self.signals_inout = []; self.signals_dbear = [] #save past in & out signals # set a warm-up period to initialize the indicator self.SetWarmUp(timedelta(350)) self.data = {} # Scheduling self.Schedule.On( self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 30), self.rebalance) # Benchmarks self.QQQ = self.AddEquity('QQQ', res).Symbol self.benchmarks = [] self.year = self.Time.year #for resetting benchmarks annually if applicable # Setup daily consolidation symbols = [self.MRKT] + self.SIGNALS + self.FORPAIRS + [self.QQQ] + self.EQY_VEC + self.ALT_VEC for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) # Warm up history self.lookback_inout = 252 self.lookback_dbear = 126 self.history = self.History(symbols, max(self.lookback_inout+1, self.lookback_dbear+1, self.io_mom_lookback+1), Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() def OnSecuritiesChanged(self, changes): addedSymbols = [] for security in changes.AddedSecurities: addedSymbols.append(security.Symbol) if security.Symbol not in self.data: self.data[security.Symbol] = SymbolData(security.Symbol, self.mom_lookback+1, self) if len(addedSymbols) > 0: history = self.History(addedSymbols, 1 + max(self.lookback_inout+1, self.lookback_dbear+1, self.io_mom_lookback+1), Resolution.Daily).loc[addedSymbols] for symbol in addedSymbols: try: self.data[symbol].Warmup(history.loc[symbol]) except: self.Debug(str(symbol)) continue def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-max(self.lookback_inout+1, self.lookback_dbear+1, self.io_mom_lookback+1):] self.update_history_shift() def update_history_shift(self): self.history_shift = self.history.rolling(11, center=True).mean().shift(60) def derive_vola_waitdays(self): volatility = 0.6 * np.log1p(self.history[[self.MRKT]].iloc[-self.lookback_dbear:].pct_change()).std() * np.sqrt(252) wait_days = int(volatility * self.WAITD_CONSTANT) returns_lookback = int((1.0 - volatility) * self.WAITD_CONSTANT) return wait_days, returns_lookback def signalcheck_inout(self): ##### In & Out signal check logic ##### # Returns sample to detect extreme observations returns_sample = (self.history.iloc[-self.lookback_inout:] / self.history_shift.iloc[-self.lookback_inout:] - 1) # Reverse code USDX: sort largest changes to bottom returns_sample[self.USDX] = returns_sample[self.USDX] * (-1) # For pairs, take returns differential, reverse coded returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA]) returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU]) returns_sample['SC_RC'] = -(returns_sample[self.SHCU] - returns_sample[self.RICU]) # Extreme observations; statist. significance = 1% pctl_b = np.nanpercentile(returns_sample, 1, axis=0) extreme_b = returns_sample.iloc[-1] < pctl_b # Re-assess/disambiguate double-edged signals if self.dcount==0: self.debt1st = self.history[self.DEBT] self.tips1st = self.history[self.TIPS] self.history['INFL'] = (self.history[self.DEBT]/self.debt1st - self.history[self.TIPS]/self.tips1st) median = np.nanmedian(self.history, axis=0) abovemedian = self.history.iloc[-1] > median ### Interest rate expectations (cost of debt) may increase because the economic outlook improves (showing in rising input prices) = actually not a negative signal extreme_b.loc[[self.DEBT]] = np.where((extreme_b.loc[[self.DEBT]].any()) & (abovemedian[[self.METL, self.NRES]].any()), False, extreme_b.loc[[self.DEBT]]) ### GOLD/SLVA differential may increase due to inflation expectations which actually suggest an economic improvement = actually not a negative signal extreme_b.loc['G_S'] = np.where((extreme_b.loc[['G_S']].any()) & (abovemedian.loc[['INFL']].any()), False, extreme_b.loc['G_S']) # Determine waitdays empirically via safe haven excess returns, 50% decay self.WDadjvar = int( max(0.50 * self.WDadjvar, self.INI_WAIT_DAYS * max(1, np.where((returns_sample[self.GOLD].iloc[-1]>0) & (returns_sample[self.SLVA].iloc[-1]<0) & (returns_sample[self.SLVA].iloc[-2]>0), self.INI_WAIT_DAYS, 1), np.where((returns_sample[self.UTIL].iloc[-1]>0) & (returns_sample[self.INDU].iloc[-1]<0) & (returns_sample[self.INDU].iloc[-2]>0), self.INI_WAIT_DAYS, 1), np.where((returns_sample[self.SHCU].iloc[-1]>0) & (returns_sample[self.RICU].iloc[-1]<0) & (returns_sample[self.RICU].iloc[-2]>0), self.INI_WAIT_DAYS, 1) )) ) self.waitdays_inout = min(60, self.WDadjvar) if (extreme_b[self.SIGNALS + self.pairlist]).any(): self.be_in_inout = False self.outday_inout = self.dcount if (self.dcount >= self.outday_inout + self.waitdays_inout): self.be_in_inout = True self.signals_inout.append(int(self.be_in_inout)) def signalcheck_dbear(self): ##### Distilled Bear signal check logic ##### waitdays_dbear, returns_lookback = self.derive_vola_waitdays() ## Check for Bears returns = self.history.pct_change(returns_lookback).iloc[-1] silver_returns = returns[self.SLVA] gold_returns = returns[self.GOLD] industrials_returns = returns[self.INDU] utilities_returns = returns[self.UTIL] metals_returns = returns[self.METL] dollar_returns = returns[self.USDX] DISTILLED_BEAR = (((gold_returns > silver_returns) and (utilities_returns > industrials_returns)) and (metals_returns < dollar_returns) ) if DISTILLED_BEAR: self.be_in_dbear = False self.outday_dbear = self.dcount if (self.dcount >= self.outday_dbear + self.waitdays_dbear): self.be_in_dbear = True self.signals_dbear.append(int(self.be_in_dbear)) def rebalance(self): self.signalcheck_inout() self.signalcheck_dbear() ##### Return comparison of in & outs to determine relative weight ##### past_inouts = np.array(self.signals_inout[-self.io_mom_lookback:]) past_dbears = np.array(self.signals_dbear[-self.io_mom_lookback:]) length = len(past_inouts) past_eqy_ret = np.concatenate(np.array(self.history[[self.eqy_sel]].iloc[-min(length+1, (self.io_mom_lookback+1)):].pct_change())[-min(length, self.io_mom_lookback):], axis=None) past_alt_ret = np.concatenate(np.array(self.history[[self.alt_sel]].iloc[-min(length+1, (self.io_mom_lookback+1)):].pct_change())[-min(length, self.io_mom_lookback):], axis=None) returns_inout = np.product(past_inouts*past_eqy_ret+np.absolute(past_inouts-1)*past_alt_ret+1) returns_dbear = np.product(past_dbears*past_eqy_ret+np.absolute(past_dbears-1)*past_alt_ret+1) weight_inout_vs_dbear = max(0, min(1, 0.5+(returns_inout-returns_dbear)/(np.std(past_inouts*past_eqy_ret+np.absolute(past_inouts-1)*past_alt_ret)*length/15))) weighted_be_in = weight_inout_vs_dbear*self.be_in_inout + (1-weight_inout_vs_dbear)*self.be_in_dbear ##### Update stock ranking/holdings on out<>in switches and every X days when in (rebalance frequency) ##### if (self.be_in_inout!=self.be_in_inout_prior) or (self.be_in_dbear!=self.be_in_dbear_prior) or ((self.dcount-self.reb_count)==self.setrebalancefreq): self.eqy_sel = self.calc_best_mom_asset(self.EQY_VEC) self.alt_sel = self.calc_best_mom_asset(self.ALT_VEC) self.order_exec(weighted_be_in) self.reb_count = self.dcount self.be_in_inout_prior = self.be_in_inout; self.be_in_dbear_prior = self.be_in_dbear self.dcount += 1 self.charting(weight_inout_vs_dbear, weighted_be_in) def calc_best_mom_asset(self, asset_vec): asset_ret = {} for symbol in asset_vec: if not self.CurrentSlice.ContainsKey(symbol) or self.CurrentSlice[symbol] is None: asset_ret[symbol] = -100 continue try: asset_ret[symbol] = self.data[symbol].Roc.Current.Value except: self.Debug(str(symbol)) continue self.Debug("Selected asset: " +str(max(asset_ret, key=asset_ret.get))) return max(asset_ret, key=asset_ret.get) def order_exec(self, weighted_be_in): invest_pct = (1-(40/self.Portfolio.TotalPortfolioValue)) dict_weights = dict.fromkeys((self.EQY_VEC+self.ALT_VEC) , 0) dict_weights[self.eqy_sel] = weighted_be_in dict_weights[self.alt_sel] = 1-weighted_be_in # sell and buy assets if applicable for symbol, weight in dict_weights.items(): quantity = self.Portfolio.TotalPortfolioValue * invest_pct * weight / self.Securities[symbol].Close if math.floor(quantity) != self.holdings_quants[symbol]: self.Order(symbol, math.floor(quantity) - self.holdings_quants[symbol]) self.Debug([str(self.Time), str(symbol), str(math.floor(quantity) -self.holdings_quants[symbol])]) self.holdings_quants[symbol] = math.floor(quantity) def charting(self, weight_inout_vs_dbear, weighted_be_in): if self.dcount==1: self.benchmarks = [self.history[self.MRKT].iloc[-2], self.Portfolio.TotalPortfolioValue, self.history[self.QQQ].iloc[-2]] # reset portfolio value and qqq benchmark annually if self.Time.year!=self.year: self.benchmarks = [self.benchmarks[0], self.Portfolio.TotalPortfolioValue, self.history[self.QQQ].iloc[-2]] self.year = self.Time.year # SPY benchmark for main chart spy_perf = self.history[self.MRKT].iloc[-1] / self.benchmarks[0] * self.cap self.Plot('Strategy Equity', 'SPY', spy_perf) # Leverage gauge: cash level self.Plot('Cash level', 'cash', round(self.Portfolio.Cash+self.Portfolio.UnsettledCash, 0)) # Annual saw tooth return comparison: Portfolio VS QQQ saw_portfolio_return = self.Portfolio.TotalPortfolioValue / self.benchmarks[1] - 1 saw_qqq_return = self.history[self.QQQ].iloc[-1] / self.benchmarks[2] - 1 self.Plot('Annual Saw Tooth Returns: Portfolio VS QQQ', 'Annual portfolio return', round(saw_portfolio_return, 4)) self.Plot('Annual Saw Tooth Returns: Portfolio VS QQQ', 'Annual QQQ return', round(float(saw_qqq_return), 4)) ### IN/Out indicator and wait days self.Plot("In Out", "inout", int(self.be_in_inout)) self.Plot("In Out", "dbear", int(self.be_in_dbear)) self.Plot("In Out", "rel_w_inout", float(weight_inout_vs_dbear)) self.Plot("In Out", "pct_in_market", float(weighted_be_in)) self.Plot("Wait Days", "waitdays", self.waitdays_inout) class SymbolData(object): def __init__(self, symbol, roc, algorithm): self.Symbol = symbol self.Roc = RateOfChange(roc) self.algorithm = algorithm self.consolidator = algorithm.ResolveConsolidator(symbol, Resolution.Daily) algorithm.RegisterIndicator(symbol, self.Roc, self.consolidator) def Warmup(self, history): for index, row in history.iterrows(): self.Roc.Update(index, row['close'])