Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -6.045 Tracking Error 0.073 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
from datetime import datetime,timedelta import numpy as np #from fourhr_support_resistance import *32 Macdlong = None AboveSupport = None BelowResistance = None class CreativeYellowTapir(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 1, 30) # Set Start Date self.SetEndDate(2020, 12, 30) self.SetCash(100000) # Set Strategy Cash self.ticker = "USDCAD" # Rolling Windows to hold bar close data keyed by symbol self.Data = {} #for ticker in tickers: symbol = self.AddForex(self.ticker, Resolution.Hour, Market.Oanda).Symbol self.Data[symbol] = SymbolData(self, symbol) self.tolerance = 0.0025 self.toleranceR = 0.986761994 self.toleranceS = 1.004000555 self.stopLossLevel = -0.05 # stop loss percentage self.stopProfitLevel = 0.01# stop profit percentage self.SetWarmUp(400, Resolution.Hour) #def MarketClose(self): #self.SupportResistance.Reset() def OnData(self, data): #if self.IsWarmingUp: #Data to warm up the algo is being collected. # return for symbol, symbolData in self.Data.items(): #Return the dictionary's key-value pairs: if not (data.ContainsKey(symbol) and data[symbol] is not None and symbolData.IsReady): continue if self.IsWarmingUp or not all([symbolData.IsReady for symbolData in self.Data.values()]): return MACD = symbolData.macd.Current.Value MACDfast = symbolData.macd.Fast.Current.Value RSI = symbolData.rsi.Current.Value current_price = data[symbol].Close signalDeltaPercent = (MACD - MACD)/MACDfast supports, resistances = self.NextSupportResistance(symbolData.closeWindow) self.Log(f"Symbol: {symbol.Value} , Supports: {supports} , Resistances: {resistances}") #Getting the next support level if not len(supports) > 1 and not len(resistances) > 1: return #Getting the next resistance level greater_than_price = [y for y in resistances if y > current_price ] nextResistanceLevel = greater_than_price[min(range(len(greater_than_price)), key=lambda i: abs(greater_than_price[i] - current_price))] #Getting the next support level less_than_price = [x for x in supports if x < current_price ] nextSupportLevel = less_than_price[min(range(len(less_than_price)), key=lambda i: abs(less_than_price[i] - current_price))] if self.Portfolio[symbol].Invested: if self.isLong: condStopProfit = (current_price - self.buyInPrice)/self.buyInPrice > self.stopProfitLevel condStopLoss = (current_price - self.buyInPrice)/self.buyInPrice < self.stopLossLevel if condStopProfit: self.Liquidate(symbol) self.Log(f"{self.Time} Long Position Stop Profit at {current_price}") if condStopLoss: self.Liquidate(symbol) self.Log(f"{self.Time} Long Position Stop Loss at {current_price}") else: condStopProfit = (self.sellInPrice - current_price)/self.sellInPrice > self.stopProfitLevel condStopLoss = (self.sellInPrice - current_price)/self.sellInPrice < self.stopLossLevel if condStopProfit: self.Liquidate(symbol) self.Log(f"{self.Time} Short Position Stop Profit at {current_price}") if condStopLoss: self.Liquidate(symbol) self.Log(f"{self.Time} Short Position Stop Loss at {current_price}") if not self.Portfolio[symbol].Invested: closestResistanceZone = nextResistanceLevel closestSupportZone = nextSupportLevel MacdLong = signalDeltaPercent > self.tolerance AboveSupport = current_price > closestSupportZone * self.toleranceS BelowResistance = current_price < closestResistanceZone * self.toleranceR # tolerance = will be dependent on the minimum number of pips before a r/s level if RSI > 50 and Macdlong and BelowResistance: self.SetHoldings(symbol, 1) # get buy-in price for trailing stop loss/profit self.buyInPrice = current_price # entered long position self.isLong = True self.Log(f"{self.Time} Entered Long Position at {current_price}") if RSI < 50 and not Macdlong and AboveSupport: self.SetHoldings(symbol, -1) # get sell-in price for trailing stop loss/profit self.sellInPrice = current_price # entered short position self.isLong = False self.Log(f"{self.Time} Entered Short Position at {current_price}") def NextSupportResistance(self, window, variation = 0.005, h = 3): #price = self.Securities[self.ticker].Close series = window supports = [] resistances = [] maxima = [] minima = [] # finding maxima and minima by looking for hills/troughs locally for i in range(h, series.Size-h): if series[i] > series[i-h] and series[i] > series[i+h]: maxima.append(series[i]) elif series[i] < series[i-h] and series[i] < series[i+h]: minima.append(series[i]) # identifying maximas which are resistances for m in maxima: r = m * variation # maxima which are near each other commonLevel = [x for x in maxima if x > m - r and x < m + r] # if 2 or more maxima are clustered near an area, it is a resistance if len(commonLevel) > 1: # we pick the highest maxima if the cluster as our resistance level = max(commonLevel) if level not in resistances: resistances.append(level) # identify minima which are supports for l in minima: r = l * variation # minima which are near each other commonLevel = [x for x in minima if x > l - r and x < l + r] # if 2 or more minima are clustered near an area, it is a support if len(commonLevel) > 1: # We pick the lowest minima of the cluster as our support level = min(commonLevel) if level not in supports: supports.append(level) return supports, resistances #nextSupportLevel, nextResistanceLevel class SymbolData: def __init__(self, algorithm, symbol): self.macd = MovingAverageConvergenceDivergence(12,26,9) self.rsi = RelativeStrengthIndex(14) self.macdWindow = RollingWindow[IndicatorDataPoint](2) #setting the Rolling Window for the fast MACD indicator, takes two values algorithm.RegisterIndicator(symbol, self.macd, timedelta(hours=4)) self.macd.Updated += self.MacdUpdated #Updating those two values self.rsiWindow = RollingWindow[IndicatorDataPoint](2) #setting the Rolling Window for the slow SMA indicator, takes two values algorithm.RegisterIndicator(symbol, self.rsi, timedelta(hours=4)) self.rsi.Updated += self.RsiUpdated #Updating those two values self.closeWindow = RollingWindow[float](200) # Add consolidator to track rolling close prices self.consolidator = QuoteBarConsolidator(4) self.consolidator.DataConsolidated += self.CloseUpdated algorithm.SubscriptionManager.AddConsolidator(symbol, self.consolidator) def MacdUpdated(self, sender, updated): '''Event holder to update the MACD Rolling Window values''' if self.macd.IsReady: self.macdWindow.Add(updated) def RsiUpdated(self, sender, updated): '''Event holder to update the RSI Rolling Window values''' if self.rsi.IsReady: self.rsiWindow.Add(updated) def CloseUpdated(self, sender, bar): '''Event holder to update the close Rolling Window values''' self.closeWindow.Add(bar.Close) @property def IsReady(self): return self.macd.IsReady and self.rsi.IsReady and self.closeWindow.IsReady