Overall Statistics |
Total Trades 22 Average Win 1.68% Average Loss -0.22% Compounding Annual Return 6.546% Drawdown 7.900% Expectancy 4.275 Net Profit 9.130% Sharpe Ratio 0.559 Probabilistic Sharpe Ratio 22.082% Loss Rate 40% Win Rate 60% Profit-Loss Ratio 7.79 Alpha 0.048 Beta 0.003 Annual Standard Deviation 0.087 Annual Variance 0.008 Information Ratio -0.523 Tracking Error 0.259 Treynor Ratio 19.305 Total Fees $64.18 Estimated Strategy Capacity $3300000.00 Lowest Capacity Asset TSLA UNU3P8Y3WFAD |
from Execution.ImmediateExecutionModel import ImmediateExecutionModel from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel from Risk.MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity import operator from datetime import timedelta, time class DeterminedBlueSheep(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 1, 1) # Set Start Date self.SetCash(100000) # Set Strategy Cash # self.AddEquity("SPY", Resolution.Minute) ################################### PARAMETRI ###################################################### #Lista di avvio self.initialList = ["AMD", "TSLA", "M", "MSFT"] self.entryZscore = 0 #percentuale di sicurezza rispetto alla deviazione standard del periodo (1 = 100%) self.myStdDays = 90 #periodo di calcolo della deviazione standard mobile self.fastAverage = 5 #finestra in giorni per la media mobile veloce self.slowAverage = 30 #finestra in giorni per la media mobile lenta self.concurrentEquities = 10 #al massimo quanti titoli gestire assieme self.insightsDaysDuration = 100 #per quanti giorni dura al massimo un insight #################################################################################################### self.UniverseSettings.Resolution = Resolution.Hour self.SetExecution(ImmediateExecutionModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.01)) #dizionario con gli indicatori e dati consolidati per ogni simbolo self.symDict = { }; #subscribe to every ticker on the list before starting the filter for ticker in self.initialList: self.AddEquity(ticker, Resolution.Hour).Symbol self.symDict[ticker] = SymbolData(self, ticker, self.entryZscore, self.myStdDays, self.fastAverage, self.slowAverage) # per ora lo scheduling e il filtro grosso/fine non possono funzionare assieme https://github.com/QuantConnect/Lean/issues/3890 self.SetUniverseSelection(ScheduledUniverseSelectionModel( self.DateRules.EveryDay(), self.TimeRules.At(10,1), self.SelectSymbols )) #lista dei simboli da tradare self.symbols = [] self.AddAlpha(SimpleGapAlphaModel(self)) #AlphaModel needs the dictionary TimeSpan.FromDays(max([self.myStdDays, self.fastAverage, self.slowAverage])+ 1) self.SetWarmUp(TimeSpan.FromDays(max([self.myStdDays, self.fastAverage, self.slowAverage])+ 1)) # Scheduled Universe Construction def SelectSymbols(self, dateTime): createdSymbols = [] # How the Universe is changing based on the list for sym in self.initialList: if self.symDict[sym].gapIndicator != 0 and sym not in self.symbols: self.symbols.append(sym) elif self.symDict[sym].gapIndicator == 0 and sym in self.symbols: self.symbols.remove(sym) subset = {key: self.symDict[key] for key in self.symbols} # This should sort The dictionary by gapLevel, so we can use the strongest gaps self.symbols = [sym.symbol for sym in (sorted(subset.values(), key=operator.attrgetter('gapLevel')))] if len(self.symbols) > self.concurrentEquities: del self.symbols[self.concurrentEquities:] for sym in self.symbols: createdSymbols.append(Symbol.Create(sym, SecurityType.Equity, Market.USA)) return createdSymbols # I need to get Real Time data for some indicators def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' if not (data is not None and data.Time.time() <= time(10,0)): return for symbol, symbol_data in self.symDict.items(): if data.ContainsKey(symbol) and data[symbol] is not None and symbol_data.IsReady: symbol_data.Update(data[symbol]) #for ticker in self.initialList: # if data is None or (not data.Bars.ContainsKey(ticker)) or (not self.symDict[ticker]._retStd.IsReady): pass # else: # myTradeBar = data.Bars[ticker] # Check if it Gapes Up or Down # self.Debug(f"Assert:{myTradeBar.Open >= self.symDict[ticker].daily_bar.High or myTradeBar.Open <= self.symDict[ticker].daily_bar.Low} - {self.Time.time()} - {ticker} ready? {self.symDict[ticker]._retStd.Current.Value} - prev Hi:{self.symDict[ticker].daily_bar.High} prev Lo:{self.symDict[ticker].daily_bar.Low} Op bar:{myTradeBar.Open} ") # if myTradeBar.Open >= self.symDict[ticker].daily_bar.High*(1+self.symDict[ticker].entryZscore*self.symDict[ticker]._retStd.Current.Value): # self.symDict[ticker].gapIndicator = 1 # self.symDict[ticker].gapLevel = (myTradeBar.Open - self.symDict[ticker].daily_bar.High)/self.symDict[ticker].daily_bar.High # elif myTradeBar.Open <= self.symDict[ticker].daily_bar.Low*(1-self.symDict[ticker].entryZscore*self.symDict[ticker]._retStd.Current.Value): # self.symDict[ticker].gapIndicator = -1 # self.symDict[ticker].gapLevel = (self.symDict[ticker].daily_bar.Low - myTradeBar.Open)/self.symDict[ticker].daily_bar.Low # Check if the gape trend is still on # if self.symDict[ticker].gapIndicator > 0 and self.symDict[ticker].fast.Current.Value < self.symDict[ticker].slow.Current.Value: # self.symDict[ticker].gapIndicator = 0 # elif self.symDict[ticker].gapIndicator < 0 and self.symDict[ticker].fast.Current.Value > self.symDict[ticker].slow.Current.Value: # self.symDict[ticker].gapIndicator = 0 class SymbolData(object): def __init__(self, algorithm, symbol, entryZscore, myStDays, fastAverage, slowAverage): self.algo = algorithm self.symbol = symbol self.entryZscore = entryZscore #percentuale di sicurezza rispetto alla deviazione standard del periodo self.myStdDays = myStDays #periodo di calcolo della deviazione standard mobile self.fastAverage = fastAverage #finestra in giorni per la media mobile veloce self.slowAverage = slowAverage #finestra in giorni per la media mobile lenta self.gapIndicator = 0 #0 fine trend, 1 gappa su e uptrend, -1 gappa giù e downtrend self.gapLevel = 0 self.daily_bar = None self.prev_bar = None self.daily_consolidator = TradeBarConsolidator(timedelta(days = 1)) ## 1 Day TradeBar Consolidator self.daily_consolidator.DataConsolidated += self.DailyConsolidator ## Add fuction to do what you want every day with your data self.algo.SubscriptionManager.AddConsolidator(self.symbol, self.daily_consolidator) self._retStd = StandardDeviation(self.symbol, self.myStdDays) #Deviazione Standard sui ritorni self.algo.RegisterIndicator(self.symbol, self._retStd, Resolution.Daily) self.fast = ExponentialMovingAverage(self.fastAverage) self.algo.RegisterIndicator(self.symbol, self.fast, Resolution.Daily) self.slow = ExponentialMovingAverage(self.slowAverage) self.algo.RegisterIndicator(self.symbol, self.slow, Resolution.Daily) def DailyConsolidator(self, sender, bar): self.daily_bar = bar if self.prev_bar is not None: ret = (self.daily_bar.Close - self.prev_bar.Close) / self.prev_bar.Close self._retStd.Update(self.algo.Time, ret) self.fast.Update(self.algo.Time, self.daily_bar.Close) self.slow.Update(self.algo.Time, self.daily_bar.Close) self.prev_bar = bar else: self.prev_bar = bar @property def IsReady(self): return self._retStd.IsReady and self.fast.IsReady and self.slow.IsReady def Update(self, bar): # Check if it Gapes Up or Down if bar.Open >= self.daily_bar.High * (1+self.entryZscore * self._retStd.Current.Value): self.gapIndicator = 1 self.gapLevel = (bar.Open - self.daily_bar.High)/self.daily_bar.High elif bar.Open <= self.daily_bar.Low*(1-self.entryZscore*self._retStd.Current.Value): self.gapIndicator = -1 self.gapLevel = (self.daily_bar.Low - bar.Open)/self.daily_bar.Low # Check if the gape trend is still on if self.gapIndicator > 0 and self.fast.Current.Value < self.slow.Current.Value: self.gapIndicator = 0 elif self.gapIndicator < 0 and self.fast.Current.Value > self.slow.Current.Value: self.gapIndicator = 0 class SimpleGapAlphaModel(AlphaModel): def __init__(self, algorithm): self.algo = algorithm self.addedSym = [] self.removedSym = [] def OnSecuritiesChanged(self, algorithm, changes): addedEquities = [x for x in changes.AddedSecurities] self.addedSym = [x.Symbol for x in addedEquities] removedEquities = [x for x in changes.RemovedSecurities] self.removedSym = [x.Symbol for x in removedEquities] def Update(self, algorithm, data): insights = [] if self.algo.IsWarmingUp: return insights if self.removedSym is not None: for x in self.removedSym: insights.append(Insight.Price(x, timedelta(days=self.algo.insightsDaysDuration), InsightDirection.Flat)) self.removedSym = None if self.addedSym is not None: for x in self.addedSym: if self.algo.symDict[x.Value].gapIndicator > 0: insights.append(Insight.Price(x,timedelta(days=self.algo.insightsDaysDuration), InsightDirection.Up)) elif self.algo.symDict[x.Value].gapIndicator < 0: insights.append(Insight.Price(x,timedelta(days=self.algo.insightsDaysDuration), InsightDirection.Down)) self.addedSym = None return insights