Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 13.098% Drawdown 13.200% Expectancy 0 Net Profit 0% Sharpe Ratio 1.013 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.002 Beta 0.997 Annual Standard Deviation 0.128 Annual Variance 0.016 Information Ratio 0.371 Tracking Error 0.003 Treynor Ratio 0.13 Total Fees $1.00 |
namespace QuantConnect { /* * QuantConnect University: Full Basic Template: * * The underlying QCAlgorithm class is full of helper methods which enable you to use QuantConnect. * We have explained some of these here, but the full algorithm can be found at: * https://github.com/QuantConnect/QCAlgorithm/blob/master/QuantConnect.Algorithm/QCAlgorithm.cs */ public class BasicTemplateAlgorithm : QCAlgorithm { string symbol = "SPY"; VolumeMovingAverage vma = new VolumeMovingAverage(14); //Initialize the data and resolution you require for your strategy: public override void Initialize() { //Start and End Date range for the backtest: SetStartDate(2013, 1, 1); SetEndDate(DateTime.Now.Date.AddDays(-1)); //Cash allocation SetCash(25000); //Add as many securities as you like. All the data will be passed into the event handler: AddSecurity(SecurityType.Equity, symbol, Resolution.Minute); RegisterIndicator(symbol, vma, Resolution.Minute, null); PlotIndicator(string.Format("VMA{0}", symbol), vma); } //Data Event Handler: New data arrives here. "TradeBars" type is a dictionary of strings so you can access it by symbol. public void OnData(TradeBars data) { //vma.Update(data["SPY"]); //Debug(string.Format("VMA{0}", vma.Current)); // "TradeBars" object holds many "TradeBar" objects: it is a dictionary indexed by the symbol: // // e.g. data["MSFT"] data["GOOG"] if (!Portfolio.HoldStock) { int quantity = (int)Math.Floor(Portfolio.Cash / data["SPY"].Close); //Order function places trades: enter the string symbol and the quantity you want: Order("SPY", quantity); //Debug sends messages to the user console: "Time" is the algorithm time keeper object Debug("Purchased SPY on " + Time.ToShortDateString()); //You can also use log to send longer messages to a file. You are capped to 10kb //Log("This is a longer message send to log."); } } } }
using QuantConnect.Data.Market; using System.Linq; namespace QuantConnect.Indicators { /// <summary> /// Represents the traditional exponential moving average indicator (EMA) /// </summary> public class VolumeMovingAverage : IndicatorBase<TradeBar> { private readonly int _period; private RollingWindow<TradeBar> _tradeBars; /// <summary>Initializes a new instance of the VolumeMovingAverage class with the specified name and period /// </summary> /// <param name="name">The name of this indicator</param> /// <param name="period">The period of the EMA</param> public VolumeMovingAverage(string name, int period) : base(name) { _period = period; _tradeBars = new RollingWindow<TradeBar>(period); } /// <summary> /// Initializes a new instance of the ExponentialMovingAverage class with the default name and period /// </summary> /// <param name="period">The period of the EMA</param> public VolumeMovingAverage(int period) : this("VMA" + period, period) { } /// <summary> /// Gets a flag indicating when this indicator is ready and fully initialized /// </summary> public override bool IsReady { get { return Samples >= _period; } } /// <summary> /// Computes the next value of this indicator from the given state /// </summary> /// <param name="input">The input given to the indicator</param> /// <returns>A new value for this indicator</returns> protected override decimal ComputeNextValue(TradeBar input) { _tradeBars.Add(input); decimal totalVolume = _tradeBars.Select(x => x.Volume).Sum(); // our first data point just return identity if (Samples == 1 || totalVolume == 0) { return input.Close; } decimal volume = input.Volume; return ((Current * (totalVolume - volume)) / totalVolume) + ((volume * input.Price) / totalVolume); } } }