Overall Statistics |
Total Orders 1710 Average Win 3.29% Average Loss -2.41% Compounding Annual Return 301.463% Drawdown 42.900% Expectancy 0.122 Start Equity 100000 End Equity 616560.8 Net Profit 516.561% Sharpe Ratio 3.118 Sortino Ratio 3.446 Probabilistic Sharpe Ratio 75.341% Loss Rate 53% Win Rate 47% Profit-Loss Ratio 1.36 Alpha 2.488 Beta 3.928 Annual Standard Deviation 0.945 Annual Variance 0.893 Information Ratio 3.131 Tracking Error 0.904 Treynor Ratio 0.75 Total Fees $44264.20 Estimated Strategy Capacity $63000000.00 Lowest Capacity Asset NQ YJHOAMPYKQGX Portfolio Turnover 5374.72% |
# region imports from AlgorithmImports import * from datetime import timedelta import numpy as np from sklearn.linear_model import LinearRegression # endregion class VolumeProfileAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2023, 1, 1) self.set_end_date(2024, 8, 1) self.set_cash(100000) # Set the symbol of the asset we want to trade future = self.add_future( Futures.Indices.NASDAQ_100_E_MINI, Resolution.MINUTE ) future.set_filter(timedelta(0), timedelta(182)) self.future_symbol = future.symbol self.futures_contract = None self.contract_count = 0 # Volume Profile indicator settings self.profile_period = 120 # 2 hours self.value_area_percentage = 0.4 self.volume_profile = VolumeProfile( "Volume Profile", self.profile_period, self.value_area_percentage ) # Rolling window to store past prices self.past_prices_period = 20 self.past_prices = RollingWindow[TradeBar](self.past_prices_period) # Consolidate data self.consolidate( self.future_symbol, timedelta(minutes=1), self.on_data_consolidated ) self.register_indicator( self.future_symbol, self.volume_profile, timedelta(hours=2) ) # Setting stoploss self.stop_loss_len = 100 self.stop_loss_indicator = self.min( self.future_symbol, self.stop_loss_len, Resolution.MINUTE ) self.stop_loss_price = 0 # Warm up period self.set_warm_up(timedelta(days=2)) # Free portfolio setting self.settings.free_portfolio_value = 0.3 def on_data_consolidated(self, data: Slice): # Store the past prices of the future contract self.past_prices.add(data) def on_data(self, data: Slice): # Check if the strategy warm up period is over and indicators are ready if self.is_warming_up or not self.volume_profile.is_ready or not self.past_prices.is_ready or not self.stop_loss_indicator.is_ready: # self.log( # f"Warming up: {self.is_warming_up}, Volume Profile Ready: {self.volume_profile.is_ready}, Past Prices Ready: {self.past_prices.is_ready}") return current_price = self.past_prices[0].close # Verify entry criteria to invest if not self.portfolio.invested: self.log("Not invested! Finding futures contract...") # Find the future contract with the max open interest above 1000 # This for-loop works because we're only checking one futures security for chain in data.future_chains: popular_contracts = [ contract for contract in chain.value if contract.open_interest > 1000 ] if len(popular_contracts) == 0: continue self.futures_contract = max( popular_contracts, key=lambda k: k.open_interest) self.log(f"Futures Contract Symbol: {self.futures_contract.symbol}") # Check if price is moving towards the value area based on the direction of the slope # and the volume profile past_prices = [x.close for x in self.past_prices if x is not None] slope = self.compute_slope(past_prices) # Log the indicators and price self.log( f""" Current Price: {current_price} Slope: {slope} Value Area High: {self.volume_profile.value_area_high} Value Area Low: {self.volume_profile.value_area_low} """ ) if (self.volume_profile.value_area_low <= current_price <= self.volume_profile.value_area_high): # Long condition if slope < -0.5: self.log( "Price is moving towards the value area! Invest!") self.set_holdings(self.futures_contract.symbol, 1) self.stop_loss_price = self.stop_loss_indicator.current.value self.log( f"Current price: {current_price}, stop order price: {self.stop_loss_price}") else: self.log("Price isn't in value area, keep waiting...") # Exit or update exit stop loss price else: # Exit check if current_price < self.stop_loss_price: self.log(f"Stop loss at {current_price}") self.liquidate(self.futures_contract.symbol) # Check if you should update stop loss price elif self.past_prices[0].close > self.past_prices[1].close: self.stop_loss_price = self.stop_loss_price + \ (self.past_prices[0].close - self.past_prices[1].close) self.log( f"Updating stop loss order of {self.stop_loss_price}!") # Plotting the data # self.plot("VolumeProfile","vp", self.volume_profile.current.value) # self.plot("VolumeProfile","profile_high", self.volume_profile.profile_high) # self.plot("VolumeProfile","profile_low", self.volume_profile.profile_low) # self.plot("VolumeProfile","poc_price", self.volume_profile.poc_price) # self.plot("VolumeProfile","poc_volume", self.volume_profile.poc_volume) # self.plot("VolumeProfile","value_area_volume", self.volume_profile.value_area_volume) # self.plot("VolumeProfile","value_area_high", self.volume_profile.value_area_high) # self.plot("VolumeProfile","value_area_low", self.volume_profile.value_area_low) # self.plot("VolumeProfile","current_price", self.past_prices[0].close) def compute_slope(self, prices: list) -> float: # Convert list to numpy array and reshape to 2D for sklearn prices_array = np.array(prices).reshape(-1, 1) # Create an array of indices representing time times = np.array(range(len(prices))).reshape(-1, 1) # Fit a linear regression model model = LinearRegression().fit(times, prices_array) # Return the slope of the regression line return model.coef_[0][0]