Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.761 Tracking Error 0.254 Treynor Ratio 0 Total Fees $0.00 |
from datetime import timedelta import numpy as np from scipy import stats from collections import deque class ModulatedMultidimensionalReplicator(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 6, 10) # Set Start Date self.SetCash(100000) # Set Strategy Cash # self.AddEquity("SPY", Resolution.Minute) self.AddAlpha(MOMAlphaModel()) self.AddEquity('SPY', Resolution.Daily) self.AddEquity('QQQ', Resolution.Daily) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' # if not self.Portfolio.Invested: # self.SetHoldings("SPY", 1) class CustomSlope: def __init__(self, name, period): self.Name = name self.Time = datetime.min self.IsReady = False self.Value = 0 self.queue = deque(maxlen=period) # Update method is mandatory def Update(self, input): self.queue.append(input.Close) if not len(self.queue) == self.queue.maxlen: return False y= [np.log(data) for data in self.queue] x = [i for i in range(len(y))] slope,r_value = stats.linregress(x,y)[0],stats.linregress(x,y)[2] self.Value = slope return True class MOMAlphaModel(AlphaModel): def __init__(self): self.mom = {} def OnSecuritiesChanged(self, algorithm, changes): for security in changes.AddedSecurities: symbol = security.Symbol self.mom[symbol] = CustomSlope('CSlope', 100) algorithm.RegisterIndicator(symbol, self.mom[symbol], Resolution.Daily) def Update(self, algorithm, data): insights = [] ordered = sorted(self.mom.items(), key=lambda x: x[1].Value, reverse=True)[:4] for x in ordered: symbol = x[0] insights.append( Insight.Price(symbol, timedelta(1), InsightDirection.Up) ) return insights