Overall Statistics |
Total Orders 7307 Average Win 0.06% Average Loss -0.07% Compounding Annual Return 14.403% Drawdown 21.600% Expectancy 0.196 Start Equity 1000000 End Equity 1712993.70 Net Profit 71.299% Sharpe Ratio 0.764 Sortino Ratio 0.87 Probabilistic Sharpe Ratio 30.579% Loss Rate 37% Win Rate 63% Profit-Loss Ratio 0.89 Alpha -0.004 Beta 1.084 Annual Standard Deviation 0.129 Annual Variance 0.017 Information Ratio 0.073 Tracking Error 0.057 Treynor Ratio 0.091 Total Fees $20833.13 Estimated Strategy Capacity $18000000.00 Lowest Capacity Asset BKHM T26HC5UAM0YT Portfolio Turnover 4.06% |
#region imports from AlgorithmImports import * from indicator import CustomMomentumPercent #endregion class MomentumQuantilesAlphaModel(AlphaModel): def __init__(self, quantiles, lookback_months): self.quantiles = quantiles self.lookback_months = lookback_months self.securities_list = [] self.day = -1 def on_securities_changed(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None: # Create and register indicator for each security in the universe security_by_symbol = {} for security in changes.added_securities: # Create an indicator security_by_symbol[security.symbol] = security security.indicator = CustomMomentumPercent("custom", self.lookback_months) self._register_indicator(algorithm, security) self.securities_list.append(security) # Warm up the indicators of newly-added stocks if security_by_symbol: history = algorithm.history[TradeBar](list(security_by_symbol.keys()), (self.lookback_months+1) * 30, Resolution.DAILY, data_normalization_mode=DataNormalizationMode.SCALED_RAW) for trade_bars in history: for bar in trade_bars.values(): security_by_symbol[bar.symbol].consolidator.update(bar) # Stop updating consolidator when the security is removed from the universe for security in changes.removed_securities: if security in self.securities_list: algorithm.subscription_manager.remove_consolidator(security.symbol, security.consolidator) self.securities_list.remove(security) def update(self, algorithm: QCAlgorithm, data: Slice) -> List[Insight]: # Reset indicators when corporate actions occur for symbol in set(data.splits.keys() + data.dividends.keys()): security = algorithm.securities[symbol] if security in self.securities_list: security.indicator.reset() algorithm.subscription_manager.remove_consolidator(security.symbol, security.consolidator) self._register_indicator(algorithm, security) history = algorithm.history[TradeBar](security.symbol, (security.indicator.warm_up_period+1) * 30, Resolution.DAILY, data_normalization_mode=DataNormalizationMode.SCALED_RAW) for bar in history: security.consolidator.update(bar) # Only emit insights when there is quote data, not when a corporate action occurs (at midnight) if data.quote_bars.count == 0: return [] # Only emit insights once per day if self.day == algorithm.time.day: return [] self.day = algorithm.time.day # Get the momentum of each asset in the universe momentum_by_symbol = {security.symbol : security.indicator.current.value for security in self.securities_list if security.symbol in data.quote_bars and security.indicator.is_ready} # Determine how many assets to hold in the portfolio quantile_size = int(len(momentum_by_symbol)/self.quantiles) if quantile_size == 0: return [] # Create insights to long the assets in the universe with the greatest momentum weight = 1 / (quantile_size+1) insights = [] for symbol, _ in sorted(momentum_by_symbol.items(), key=lambda x: x[1], reverse=True)[:quantile_size]: insights.append(Insight.price(symbol, Expiry.END_OF_DAY, InsightDirection.UP, weight=weight)) return insights def _register_indicator(self, algorithm, security): # Update the indicator with monthly bars security.consolidator = TradeBarConsolidator(Calendar.MONTHLY) algorithm.subscription_manager.add_consolidator(security.symbol, security.consolidator) algorithm.register_indicator(security.symbol, security.indicator, security.consolidator)
#region imports from AlgorithmImports import * #endregion class CustomMomentumPercent(PythonIndicator): def __init__(self, name, period): self.Name = name self.Time = datetime.min self.Value = 0 self.momentum = MomentumPercent(period) def Update(self, input): self.momentum.Update(IndicatorDataPoint(input.Symbol, input.EndTime, input.Close)) self.Time = input.EndTime self.Value = self.momentum.Current.Value * input.Volume # Multiply momentum percent with dollar volume return self.momentum.IsReady
# region imports from AlgorithmImports import * from alpha import MomentumQuantilesAlphaModel # endregion class TacticalMomentumRankAlgorithm(QCAlgorithm): undesired_symbols_from_previous_deployment = [] checked_symbols_from_previous_deployment = False def initialize(self): self.set_start_date(2013, 1, 1) # Set Start Date self.set_end_date(2017, 1, 1) self.set_cash(1_000_000) self.SetBenchmark("SPY") self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN) self.settings.minimum_order_margin_portfolio_percentage = 0 self.settings.rebalance_portfolio_on_security_changes = False self.settings.rebalance_portfolio_on_insight_changes = False self.day = -1 self.set_warm_up(timedelta(7)) self.universe_settings.asynchronous = True self.add_universe_selection(FundamentalUniverseSelectionModel(self.fundamental_filter_function)) self.add_alpha(MomentumQuantilesAlphaModel( int(self.get_parameter("quantiles")), int(self.get_parameter("lookback_months")) )) self.set_portfolio_construction(InsightWeightingPortfolioConstructionModel(rebalance=Expiry.EndOfMonth)) self.add_risk_management(NullRiskManagementModel()) self.set_execution(ImmediateExecutionModel()) def on_data(self, data): # Exit positions that aren't backed by existing insights # If you don't want this behavior, delete this method definition. if not self.is_warming_up and not self.checked_symbols_from_previous_deployment: for security_holding in self.portfolio.values(): if not security_holding.invested: continue symbol = security_holding.symbol if not self.insights.has_active_insights(symbol, self.utc_time): self.undesired_symbols_from_previous_deployment.append(symbol) self.checked_symbols_from_previous_deployment = True for symbol in self.undesired_symbols_from_previous_deployment: if self.is_market_open(symbol): self.liquidate(symbol, tag="Holding from previous deployment that's no longer desired") self.undesired_symbols_from_previous_deployment.remove(symbol) def fundamental_filter_function(self, fundamental: List[Fundamental]): filtered = [f for f in fundamental if f.symbol.value != "AMC" and f.has_fundamental_data and not np.isnan(f.dollar_volume)] sorted_by_dollar_volume = sorted(filtered, key=lambda f: f.dollar_volume, reverse=True) return [f.symbol for f in sorted_by_dollar_volume[:1000]]