Overall Statistics |
Total Trades 9 Average Win 0.26% Average Loss -0.28% Compounding Annual Return 153.301% Drawdown 1.100% Expectancy -0.515 Net Profit 1.195% Sharpe Ratio 18.598 Probabilistic Sharpe Ratio 84.659% Loss Rate 75% Win Rate 25% Profit-Loss Ratio 0.94 Alpha 0.986 Beta 0.449 Annual Standard Deviation 0.101 Annual Variance 0.01 Information Ratio -0.865 Tracking Error 0.123 Treynor Ratio 4.179 Total Fees $30.95 Estimated Strategy Capacity $24000000.00 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from QuantConnect.Parameters import * ### <summary> ### Demonstration of the parameter system of QuantConnect. Using parameters you can pass the values required into C# algorithms for optimization. ### </summary> ### <meta name="tag" content="optimization" /> ### <meta name="tag" content="using quantconnect" /> class ParameterizedAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2013, 10, 7) #Set Start Date self.SetEndDate(2013, 10, 11) #Set End Date self.SetCash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.AddEquity("SPY") # Receive parameters from the Job ema_fast = self.GetParameter("ema-fast") ema_slow = self.GetParameter("ema-slow") # The values 100 and 200 are just default values that only used if the parameters do not exist fast_period = 100 if ema_fast is None else int(ema_fast) slow_period = 200 if ema_slow is None else int(ema_slow) self.fast = self.EMA("SPY", fast_period) self.slow = self.EMA("SPY", slow_period) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' # wait for our indicators to ready if not self.fast.IsReady or not self.slow.IsReady: return fast = self.fast.Current.Value slow = self.slow.Current.Value if fast > slow * 1.001: self.SetHoldings("SPY", 1) elif fast < slow * 0.999: self.Liquidate("SPY")