Overall Statistics
Total Trades
7884
Average Win
0.12%
Average Loss
-0.11%
Compounding Annual Return
34.258%
Drawdown
39.400%
Expectancy
0.662
Net Profit
2121.734%
Sharpe Ratio
1.353
Probabilistic Sharpe Ratio
73.309%
Loss Rate
20%
Win Rate
80%
Profit-Loss Ratio
1.08
Alpha
0.314
Beta
-0.043
Annual Standard Deviation
0.228
Annual Variance
0.052
Information Ratio
0.632
Tracking Error
0.279
Treynor Ratio
-7.162
Total Fees
$13663.76
Estimated Strategy Capacity
$1600000.00
Lowest Capacity Asset
TMF UBTUG7D0B7TX
class SleepyYellowBee(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2010, 12, 23)
        self.SetCash(100000) 
        self.AddEquity("SPY", Resolution.Daily)
        self.SetBenchmark("SPY")
        # Variable to hold the last calculated benchmark value
        self.lastBenchmarkValue = None
        # Our inital benchmark value scaled to match our portfolio
        self.BenchmarkPerformance = self.Portfolio.TotalPortfolioValue
        
        #self.Float = self.GetParameter("self.Float")
        self.Float = 0.01
        self.non_float = 1 - self.Float
        
        # target allocations
        self.TQQQ_target = 0.20*self.non_float
        self.UPRO_target = 0.20*self.non_float
        self.TMF_target = 0.60*self.non_float
        
        #import equities 
        self.AddEquity("TQQQ", Resolution.Daily)
        self.AddEquity("UPRO", Resolution.Daily)
        self.TMF = self.AddEquity("TMF", Resolution.Daily)
        
        #EMAs for bear filter
        self.ema_fast = self.EMA("SPY", 5)
        self.ema_slow = self.EMA("SPY", 100)
        
        self.rebalance_date = self.Time + timedelta(days = 100)
        

    def OnData(self, data):
        
        # when bull market
        if self.ema_fast > self.ema_slow:
            self.TQQQ_target = 0.30*self.non_float
            self.UPRO_target = 0.30*self.non_float
            self.TMF_target = 0.40*self.non_float
            self.Log('Fuck yeah Bull market')
            self.Plot("BULL - BEAR", "Bull", 1)
            self.Plot("BULL - BEAR", "Bear", 0)
            self.Rebalance(data)
        # when bear market - ******* PLAYING WITH THESE ***********8
        if self.ema_fast < self.ema_slow:
            self.TQQQ_target = 0.15*self.non_float
            self.UPRO_target = 0.15*self.non_float
            self.TMF_target = 0.50*self.non_float
            self.Log('Fuck no Bear market')
            self.Plot("BULL - BEAR", "Bull", 0)
            self.Plot("BULL - BEAR", "Bear", 1)
            self.Rebalance(data)
        
        # Plot EMAs
        self.Plot("Benchmark", "Fast", self.ema_fast.Current.Value)
        self.Plot("Benchmark", "Slow", self.ema_slow.Current.Value)
        
        # Plot assets 
        self.Plot("Assets", "TMF", self.Securities["TMF"].Close)
        self.Plot("Assets", "UPRO", self.Securities["UPRO"].Close)
        self.Plot("Assets", "TQQQ", self.Securities["TQQQ"].Close)
        
        # Check if we're not invested and then put portfolio 100% in the SPY ETF.      
        if not self.Portfolio.Invested:
           self.SetHoldings("TQQQ", self.TQQQ_target)
           self.SetHoldings("UPRO", self.UPRO_target)
           self.SetHoldings("TMF", self.TMF_target)
        
        #rebalance_date = self.Time + timedelta(days = 370)
        
        if self.Time == self.rebalance_date:
            self.Rebalance(data)
            
            
            
        # store the current benchmark close price
        benchmark = self.Securities["SPY"].Close
        # enter our strategy
        if not self.Portfolio.Invested:
            self.Rebalance(data)
        # Calculate the performance of our benchmark and update our benchmark value for plotting
        if self.lastBenchmarkValue is not  None:
           self.BenchmarkPerformance = self.BenchmarkPerformance * (benchmark/self.lastBenchmarkValue)
        # store today's benchmark close price for use tomorrow
        self.lastBenchmarkValue = benchmark
        # make our plots
        self.Plot("Strategy vs Benchmark", "Portfolio Value", self.Portfolio.TotalPortfolioValue)
        self.Plot("Strategy vs Benchmark", "Benchmark", self.BenchmarkPerformance)
        
          
    def Rebalance(self, data):
        self.SetHoldings("TQQQ", self.TQQQ_target)
        self.SetHoldings("UPRO", self.UPRO_target)
        self.SetHoldings("TMF", self.TMF_target)
        
        self.rebalance_date = self.Time + timedelta(days = 100)
        self.Log("Rebalanced")