Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -1.666 Tracking Error 0.165 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 |
from TrendRevAlphaModel import EmaCrossAlphaModel from Selection.QC500UniverseSelectionModel import QC500UniverseSelectionModel from Execution.ImmediateExecutionModel import ImmediateExecutionModel from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel from Risk.MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity class CalculatingTanAnguilline(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 10, 1) # Set Start Date self.SetEndDate(2020,10,19) self.SetCash(100000) # Set Strategy Cash # self.AddEquity("SPY", Resolution.Minute) self.window_size = 15 self.SetWarmUp(self.window_size) self.AddAlpha(EmaCrossAlphaModel(fastPeriod = 5, slowPeriod = 10, resolution = Resolution.Daily, window_size = self.window_size)) #self.SetUniverseSelection(QC500UniverseSelectionModel()) self.UniverseSettings.Resolution = Resolution.Daily symbols = [ Symbol.Create("TSLA", SecurityType.Equity, Market.USA) ] #, Symbol.Create("HES", SecurityType.Equity, Market.USA) ] self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) ) self.SetExecution(ImmediateExecutionModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.01)) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' # if not self.Portfolio.Invested: # self.SetHoldings("SPY", 1)
import pandas as pd import numpy as np class EmaCrossAlphaModel(AlphaModel): '''Alpha model that uses an EMA cross to create insights''' def __init__(self, fastPeriod = 5, slowPeriod = 10, resolution = Resolution.Daily, window_size = 15): '''Initializes a new instance of the EmaCrossAlphaModel class Args: fastPeriod: The fast EMA period slowPeriod: The slow EMA period''' self.window_size = window_size self.fastPeriod = fastPeriod self.slowPeriod = slowPeriod self.resolution = resolution self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod) self.rolling_window = pd.DataFrame() self.symbolDataBySymbol = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, resolutionString) def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): if data.Time in symbolData.rolling_window.index: continue close = data[symbol].Close high = data[symbol].High low = data[symbol].Low open = data[symbol].Open volume = data[symbol].Volume row = pd.DataFrame({"close": [close], "low": [low], "high": [high], "open": [open], "volume" : [volume]}, index=[data.Time]) symbolData.rolling_window = symbolData.rolling_window.append(row).iloc[-self.window_size:] algorithm.Log(f"\nRolling Window:\n{symbolData.rolling_window.to_string()}\n") if symbolData.Fast.IsReady and symbolData.Slow.IsReady: #algorithm.Debug(str(algorithm.Time)) if symbolData.FastIsOverSlow: if symbolData.Slow > symbolData.Fast: insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Down)) #algorithm.Debug(str(algorithm.Time) + " " +str(symbol) + " Buy " + str(symbolData.rolling_window)) elif symbolData.SlowIsOverFast: if symbolData.Fast > symbolData.Slow: insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up)) #algorithm.Debug(str(algorithm.Time) + " " +str(symbol) + " Sell") symbolData.FastIsOverSlow = symbolData.Fast > symbolData.Slow return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' for added in changes.AddedSecurities: symbolData = self.symbolDataBySymbol.get(added.Symbol) if symbolData is None: # create fast/slow EMAs symbolData = SymbolData(added) symbolData.Fast = algorithm.EMA(added.Symbol, self.fastPeriod, self.resolution) symbolData.Slow = algorithm.EMA(added.Symbol, self.slowPeriod, self.resolution) symbolData.rolling_window = algorithm.History(added.Symbol, self.window_size).loc[added.Symbol] algorithm.Log(f"\nRolling Window:\n{symbolData.rolling_window.to_string()}\n") self.symbolDataBySymbol[added.Symbol] = symbolData else: # a security that was already initialized was re-added, reset the indicators symbolData.Fast.Reset() symbolData.Slow.Reset() class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, security): self.Security = security self.Symbol = security.Symbol self.Fast = None self.Slow = None self.rolling_window = pd.DataFrame() # True if the fast is above the slow, otherwise false. # This is used to prevent emitting the same signal repeatedly self.FastIsOverSlow = False @property def SlowIsOverFast(self): return not self.FastIsOverSlow