Overall Statistics |
Total Trades 4122 Average Win 0.01% Average Loss -0.01% Compounding Annual Return 15.900% Drawdown 9.100% Expectancy 0.431 Net Profit 6.166% Sharpe Ratio 0.866 Probabilistic Sharpe Ratio 44.793% Loss Rate 43% Win Rate 57% Profit-Loss Ratio 1.52 Alpha 0.168 Beta -0.074 Annual Standard Deviation 0.166 Annual Variance 0.028 Information Ratio -0.72 Tracking Error 0.253 Treynor Ratio -1.942 Total Fees $4122.00 |
from io import StringIO import pandas as pd data_url = "https://www.dropbox.com/s/skbmxw8yhv6rump/trump_beta.csv?dl=1" class CalibratedTransdimensionalProcessor(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 6, 1) # Set Start Date self.SetCash(100000) # Set Strategy Cash self.symbols = self.get_symbols() self.AddUniverseSelection( ManualUniverseSelectionModel(self.symbols) ) self.UniverseSettings.Resolution = Resolution.Daily self.AddAlpha(TrumpBetaDiversificationModel(self)) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(rebalance=Resolution.Daily, portfolioBias=PortfolioBias.LongShort)) self.Settings.RebalancePortfolioOnInsightChanges = False self.Settings.RebalancePortfolioOnSecurityChanges = False self.SetExecution(ImmediateExecutionModel()) def get_symbols(self): constituents = pd.read_csv(StringIO(self.Download(data_url)), index_col="Date").columns return [Symbol.Create(s, SecurityType.Equity, Market.USA) for s in constituents] class TrumpBetaDiversificationModel: def __init__(self, algorithm): self.thresh = 0.2 self.df = pd.read_csv(StringIO(algorithm.Download(data_url)), index_col="Date") self.df.index = pd.to_datetime(self.df.index) def Update(self, algorithm, slice): insights = [] self.df.index = pd.to_datetime(self.df.index) if algorithm.Time not in self.df.index: return [] trump_beta = self.df.loc[algorithm.Time] low_trump_beta = [security for security, beta in trump_beta.iteritems() if abs(beta) < self.thresh and security in [str(s) for s in slice.keys()]] for security in trump_beta.keys(): insight = Insight(security, timedelta(1), InsightType.Price, InsightDirection.Up) insights.append(insight) return insights def OnSecuritiesChanged(self, algorithm, changes): for added in changes.AddedSecurities: algorithm.AddData(TrumpBeta, added.Symbol) class TrumpBeta(PythonData): def __init__(self): self.columns = {} def GetSource(self, config, date, isLive): return SubscriptionDataSource(data_url, SubscriptionTransportMedium.RemoteFile); def Reader(self, config, line, date, isLive): data = line.split(',') if not (line.strip() and line[0].isdigit()): self.columns = {data[i]: i for i in range(0, len(data) - 1)} return None ticker = str(config.Symbol).split('.')[0] if ticker not in self.columns: return None trump_beta = TrumpBeta() trump_beta.Symbol = config.Symbol trump_beta.Time = pd.to_datetime(data[self.columns["Date"]]) + timedelta(days=10) # Make sure we only get this data AFTER trading day - don't want forward bias. value = data[self.columns[ticker]] if not value: return None trump_beta.Value = float(value) return trump_beta