Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.586 Tracking Error 0.259 Treynor Ratio 0 Total Fees $0.00 |
from Execution.ImmediateExecutionModel import ImmediateExecutionModel from HealthcareUniverse import HealthcareUniverse from datetime import timedelta from enum import Enum class TachyonModulatedCircuit(QCAlgorithm): def Initialize(self): # Set Start Date so that backtest has 5+ years of data # The blocked section of code below is to remain UNCHANGED for the weekly competitions. # # Insight-weighting portfolio construction model: # - You can change the rebalancing date rules or portfolio bias # - For more info see https://github.com/QuantConnect/Lean/blob/master/Algorithm.Framework/Portfolio/InsightWeightingPortfolioConstructionModel.py # # Use the Alpha Streams Brokerage Model: # - Developed in conjunction with funds to model their actual fees, costs, etc. Please do not modify other models. ############################################################################################################################### self.SetStartDate(2019, 3, 1) # 5 years up to the submission date self.SetCash(1000000) # Set $1m Strategy Cash to trade significant AUM self.SetBenchmark('SPY') # SPY Benchmark self.SetBrokerageModel(AlphaStreamsBrokerageModel()) self.SetExecution(ImmediateExecutionModel()) self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel()) ############################################################################################################################### # Do not change the code above # Add the alpha model and anything else you want below self.AddAlpha(MyCompetitionAlphaModel()) # Add a universe selection model self.SetUniverseSelection(HealthcareUniverse()) class MyCompetitionAlphaModel(AlphaModel): def __init__(self, period = 14, resolution = Resolution.Daily):# *args, **kwargs): '''Initializes a new default instance of your Alpha Model class.''' self.period = period self.resolution = resolution self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), period) self.symbolDataBySymbol ={} def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] # This is where insights are returned, which are then passed to the # Portfolio Construction, Risk, and Execution models. # The following Insight properties MUST be set before returning # - Symbol -- Secuirty Symbol # - Duration -- Time duration that the Insight is in effect # - Direction -- Direction of predicted price movement # - Weight -- Proportion of algorithm capital to be allocated to this Insight for symbol, symbolData in self.symbolDataBySymbol.items(): rsi = symbolData.RSI previous_state = symbolData.State state = self.GetState(rsi, previous_state) wt = 1/len(self.symbolDataBySymbol.items()) if state != previous_state and rsi.IsReady: if state == State.TrippedLow: insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Up,wt)) if state == State.TrippedHigh: insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Down,wt)) symbolData.State = state return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' symbols = [ x.Symbol for x in changes.RemovedSecurities ] if len(symbols) > 0: for subscription in algorithm.SubscriptionManager.Subscriptions: if subscription.Symbol in symbols: self.symbolDataBySymbol.pop(subscription.Symbol, None) subscription.Consolidators.Clear() # initialize data for added securities addedSymbols = [ x.Symbol for x in changes.AddedSecurities if x.Symbol not in self.symbolDataBySymbol] if len(addedSymbols) == 0: return history = algorithm.History(addedSymbols, self.period, self.resolution) for symbol in addedSymbols: rsi = algorithm.RSI(symbol, self.period, MovingAverageType.Wilders, self.resolution) if not history.empty: ticker = SymbolCache.GetTicker(symbol) if ticker not in history.index.levels[0]: continue for tuple in history.loc[ticker].itertuples(): rsi.Update(tuple.Index, tuple.close) self.symbolDataBySymbol[symbol] = SymbolData(symbol, rsi) def GetState(self, rsi, previous): ''' Determines the new state. This is basically cross-over detection logic that includes considerations for bouncing using the configured bounce tolerance.''' if rsi.Current.Value > 70: return State.TrippedHigh if rsi.Current.Value < 30: return State.TrippedLow if previous == State.TrippedLow: if rsi.Current.Value > 35: return State.Middle if previous == State.TrippedHigh: if rsi.Current.Value < 65: return State.Middle return previous class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, rsi): self.Symbol = symbol self.RSI = rsi self.State = State.Middle class State(Enum): '''Defines the state. This is used to prevent signal spamming and aid in bounce detection.''' TrippedLow = 0 Middle = 1 TrippedHigh = 2
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel class HealthcareUniverse(FundamentalUniverseSelectionModel): ''' This module selects the most liquid stocks listed on the Nasdaq Stock Exchange. ''' def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None): '''Initializes a new default instance of the TechnologyUniverseModule''' super().__init__(filterFineData, universeSettings, securityInitializer) self.numberOfSymbolsCoarse = 1000 self.numberOfSymbolsFine = 100 self.dollarVolumeBySymbol = {} self.lastMonth = -1 def SelectCoarse(self, algorithm, coarse): ''' Performs a coarse selection: -The stock must have fundamental data -The stock must have positive previous-day close price -The stock must have positive volume on the previous trading day ''' if algorithm.Time.month == self.lastMonth: return Universe.Unchanged sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0], key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse] self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume} # If no security has met the QC500 criteria, the universe is unchanged. if len(self.dollarVolumeBySymbol) == 0: return Universe.Unchanged return list(self.dollarVolumeBySymbol.keys()) def SelectFine(self, algorithm, fine): ''' Performs a fine selection for companies in the Morningstar Banking Sector ''' # Filter stocks and sort on dollar volume sortedByDollarVolume = sorted([x for x in fine if x.AssetClassification.MorningstarSectorCode == MorningstarSectorCode.Healthcare], key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True) if len(sortedByDollarVolume) == 0: return Universe.Unchanged self.lastMonth = algorithm.Time.month return [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]