Overall Statistics
Total Trades
8140
Average Win
0.19%
Average Loss
-0.02%
Compounding Annual Return
9.307%
Drawdown
43.400%
Expectancy
0.173
Net Profit
11.134%
Sharpe Ratio
0.411
Probabilistic Sharpe Ratio
22.881%
Loss Rate
88%
Win Rate
12%
Profit-Loss Ratio
8.41
Alpha
-0.045
Beta
1.295
Annual Standard Deviation
0.384
Annual Variance
0.148
Information Ratio
0.003
Tracking Error
0.304
Treynor Ratio
0.122
Total Fees
$9087.64
class SiegfriedsRework(QCAlgorithm):
    
    def Initialize(self):
        self.SetStartDate(2010, 8, 29)
        self.SetEndDate(2011, 11, 5)
        self.SetCash(100000)
        self.UniverseSettings.Resolution = Resolution.Minute
        self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
        self.SetUniverseSelection(FineFundamentalUniverseSelectionModel(self.SelectCoarse, self.SelectFine))
        self.spy = self.AddEquity("SPY", Resolution.Minute).Symbol
        self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY", 120), self.Rebalance)
        self.num_symb_coarse = 8000
        self.monthly_rebalance = False 
        self.new_symbols = []
        self.invested_stocks = []
        self.min_market_cap = 5
        self.min_roic = 0.7
        self.max_roic = 20 # max ROIC at purcahse only. if stock has roic intially below this threshold, but rises while in holdings, stock won't be liquidated
        self.min_volume = 200000 # minimum trading volume
        self.max_eveb = 100
        
        self.recently_rebalanced = False
    
    def OnData(self, data):
        if not self.recently_rebalanced:
            return
        insights = []
        for security in self.ActiveSecurities.Values:
            symbol = security.Symbol
            if symbol == self.spy:
                # skip SPY
                continue
            if security.Fundamentals.FinancialStatements.IncomeStatement.EBIT.TwelveMonths/security.Fundamentals.FinancialStatements.BalanceSheet.InvestedCapital.TwelveMonths < self.min_roic \
                            or security.Fundamentals.MarketCap/1000000 < self.min_market_cap:
                insights.append(Insight.Price(symbol, Expiry.EndOfMonth, InsightDirection.Down))
            else:
                insights.append(Insight.Price(symbol, Expiry.EndOfMonth, InsightDirection.Up))
        self.EmitInsights(insights)
    
    # coarse/fine universe selection runs everyday at midnight
    def SelectCoarse(self, coarse):
        
        if self.monthly_rebalance == False:
            self.recently_rebalanced = False
            return Universe.Unchanged # if selectcoarse returns universe.unchanged, selectfine is not called
        
        self.recently_rebalanced = True
        
        self.monthly_rebalance = False
        
        filtered_coarse = [x for x in coarse if x.HasFundamentalData] # removing ETFs, ETNs
        sorted_coarse = sorted(filtered_coarse, key=lambda k:k.DollarVolume, reverse=True)
        min_vol_coarse = [x for x in sorted_coarse if x.DollarVolume > self.min_volume]
        top_liquid_coarse = min_vol_coarse[:self.num_symb_coarse]
        
        return [i.Symbol for i in top_liquid_coarse if i.Symbol.Value != 'PDLI']
         
    
    def SelectFine(self, fine):
        
        filtered_fine = [x for x in fine if x.CompanyReference.CountryId == "USA"
                            and x.AssetClassification.MorningstarSectorCode != MorningstarSectorCode.Energy
                            and x.AssetClassification.MorningstarSectorCode != MorningstarSectorCode.FinancialServices
                            and x.MarketCap/1000000 > self.min_market_cap
                            and x.FinancialStatements.BalanceSheet.InvestedCapital.TwelveMonths > 0
                            and x.FinancialStatements.IncomeStatement.EBIT.TwelveMonths/x.FinancialStatements.BalanceSheet.InvestedCapital.TwelveMonths > self.min_roic
                            and x.FinancialStatements.IncomeStatement.EBIT.TwelveMonths/x.FinancialStatements.BalanceSheet.InvestedCapital.TwelveMonths < self.max_roic
                            and x.ValuationRatios.EVToEBIT3YrAvg > 0
                            and x.ValuationRatios.EVToEBIT3YrAvg < self.max_eveb] 
        
        sorted_fine = sorted(filtered_fine, key=lambda x:x.ValuationRatios.EVToEBIT3YrAvg, reverse = False)
        
        triptile = 1 if len(sorted_fine)/4 <= 0 else int(round((len(sorted_fine)/4)))
        bottom_triptile = sorted_fine[:triptile]
        
        # self.Debug(f"filtered_fine: {[str(i.Symbol) for i in filtered_fine]}")
        self.new_symbols = [i.Symbol for i in bottom_triptile]
        # self.Debug(f"chosen_fine: {[str(i) for i in self.new_symbols]}")
        
        return self.new_symbols # new symbols to add to our watchlist
    
    
    # # this is called each time a security is added or removed from our universe
    # def OnSecuritiesChanged(self, changes):
        
    #     # liquidate securities based on their fundamentals, remove from watchlist
    #     for symbol in self.Portfolio.Keys:
            
    #         # we only care about securities we are invested in
    #         if not self.Portfolio[symbol].Invested:
    #             continue
            
    #         security = self.Securities[symbol]
                                 
    #         # liquidate stocks that go below min ROIC
    #         if security.Fundamentals.FinancialStatements.IncomeStatement.EBIT.TwelveMonths/security.Fundamentals.FinancialStatements.BalanceSheet.InvestedCapital.TwelveMonths < self.min_roic \
    #                 or security.Fundamentals.MarketCap/1000000 < self.min_market_cap:
    #             self.invested_stocks.remove(security.Symbol)
    #             self.Liquidate(security.Symbol)
    #             # self.Debug(f"!!!Selling {security} @ {security.Price}," \
    #             #                  + f" ROIC is {security.Fundamentals.FinancialStatements.IncomeStatement.EBIT.TwelveMonths/security.Fundamentals.FinancialStatements.BalanceSheet.InvestedCapital.TwelveMonths}," \
    #             #                  + f" EBITDAEV is {security.Fundamentals.ValuationRatios.EVToEBIT3YrAvg}," \
    #             #                  + f" MarketCap is {security.Fundamentals.MarketCap/1000000}" \
    #             #                  + f" and Volume is {security.Fundamentals.DollarVolume/1000000}")
            
    #     if len(self.new_symbols) > 0: 
            
    #         for security in changes.AddedSecurities:
    #             if security.Fundamentals == None: # i.e. is an ETF/is SPY
    #                 continue
                
    #             # prevent duplicate entry in invested_stocks
    #             if security.Symbol not in self.invested_stocks and security.Symbol.Value is not str("PDLI R735QTJ8XC9X"):
    #                 self.invested_stocks.append(security.Symbol)  # add new securities to watchlist
                
    #     if len(self.invested_stocks) > 0:
            
    #         # for symbol in self.invested_stocks:
    #         #     security = self.Securities[symbol]
    #         #     self.SetHoldings(security.Symbol, 0.9/len(self.invested_stocks)) #0.9 to keep cash buffer
    #         #     self.Debug(f"Buying {security.Symbol} @ {security.Price}," \
    #         #                     + f" ROIC is {security.Fundamentals.FinancialStatements.IncomeStatement.EBIT.TwelveMonths/security.Fundamentals.FinancialStatements.BalanceSheet.InvestedCapital.TwelveMonths}," \
    #         #                     + f" EBITEV is {security.Fundamentals.ValuationRatios.EVToEBIT3YrAvg}," \
    #         #                     + f" MarketCap is {security.Fundamentals.MarketCap/1000000}" \
    #         #                     + f" and Volume is {security.Fundamentals.DollarVolume/1000000}")
            
    #         for symbol in self.invested_stocks:
    #             security = self.Securities[symbol]
    #             self.SetHoldings([PortfolioTarget(security.Symbol, (0.9/len(self.invested_stocks)))]) #0.9 to keep cash buffer
    #             # self.Debug(f"Buying {security.Symbol} @ {security.Price}," \
    #             #                 + f" ROIC is {security.Fundamentals.FinancialStatements.IncomeStatement.EBIT.TwelveMonths/security.Fundamentals.FinancialStatements.BalanceSheet.InvestedCapital.TwelveMonths}," \
    #             #                 + f" EBITEV is {security.Fundamentals.ValuationRatios.EVToEBIT3YrAvg}," \
    #             #                 + f" MarketCap is {security.Fundamentals.MarketCap/1000000}" \
    #             #                 + f" and Volume is {security.Fundamentals.DollarVolume/1000000}")
                                
                                
                                
    #     if len(self.new_symbols) > 0:
    #         self.Debug(f"Invested Stocks List: {[str(symbol) for symbol in self.invested_stocks]}")
    #         self.Debug(f"Portfolio Invested Stocks: {[str(symbol) for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested]}")
    #         self.Debug(f"Value of Stocks: {[float(self.Portfolio[symbol].Quantity * self.Portfolio[symbol].Price) for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested]}")
    #         self.Debug(f"Portfolio % Invested: {(self.Portfolio.TotalPortfolioValue - self.Portfolio.Cash)/self.Portfolio.TotalPortfolioValue}")
    
    # # daily data is received at midnight
    # def OnData(self, data):
    #     pass
        
    # this is called according to Schedule.On in Initialize
    def Rebalance(self):
        self.monthly_rebalance = True
        
    # def OnEndOfDay(self):
        
    #     # If there's a bug in QC data (e.g., PDLI currently showing incorrect stock price of $0),
    #     # symbols could end up in self.invested_stocks but not actually invested in portfolio
    #     self.invested_stocks = [symbol for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested]
        
    #     self.Debug(f"Invested Stocks List: {[str(symbol) for symbol in self.invested_stocks]}")
    #     self.Debug(f"Portfolio Invested Stocks: {[str(symbol) for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested]}")
    #     self.Debug(f"Value of Stocks: {[float(self.Portfolio[symbol].Quantity * self.Portfolio[symbol].Price) for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested]}")
    #     self.Debug(f"Portfolio % Invested: {(self.Portfolio.TotalPortfolioValue - self.Portfolio.Cash)/self.Portfolio.TotalPortfolioValue}")