Overall Statistics |
Total Orders 636 Average Win 0.08% Average Loss -0.09% Compounding Annual Return 2.593% Drawdown 22.500% Expectancy -0.135 Start Equity 100000 End Equity 105904.98 Net Profit 5.905% Sharpe Ratio -0.094 Sortino Ratio -0.12 Probabilistic Sharpe Ratio 7.604% Loss Rate 54% Win Rate 46% Profit-Loss Ratio 0.90 Alpha -0.024 Beta 0.767 Annual Standard Deviation 0.124 Annual Variance 0.015 Information Ratio -0.558 Tracking Error 0.05 Treynor Ratio -0.015 Total Fees $642.85 Estimated Strategy Capacity $4800000.00 Lowest Capacity Asset EFAV V0WRDXSSH205 Portfolio Turnover 1.14% |
#region imports from AlgorithmImports import * #endregion from clr import AddReference AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm.Framework") from QuantConnect import Resolution, Extensions from QuantConnect.Algorithm.Framework.Alphas import * from QuantConnect.Algorithm.Framework.Portfolio import * from itertools import groupby from datetime import datetime, timedelta class EqualWeightingPortfolioConstructionModel(PortfolioConstructionModel): '''Provides an implementation of IPortfolioConstructionModel that gives equal weighting to all securities. The target percent holdings of each security is 1/N where N is the number of securities. For insights of direction InsightDirection.Up, long targets are returned and for insights of direction InsightDirection.Down, short targets are returned.''' def __init__(self, rebalance = Resolution.Daily, portfolioBias = PortfolioBias.LongShort): '''Initialize a new instance of EqualWeightingPortfolioConstructionModel Args: rebalance: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function. If None will be ignored. The function returns the next expected rebalance time for a given algorithm UTC DateTime. The function returns null if unknown, in which case the function will be called again in the next loop. Returning current time will trigger rebalance. portfolioBias: Specifies the bias of the portfolio (Short, Long/Short, Long)''' self.portfolioBias = portfolioBias # If the argument is an instance of Resolution or Timedelta # Redefine rebalancingFunc rebalancingFunc = rebalance if isinstance(rebalance, int): rebalance = Extensions.ToTimeSpan(rebalance) if isinstance(rebalance, timedelta): rebalancingFunc = lambda dt: dt + rebalance if rebalancingFunc: self.SetRebalancingFunc(rebalancingFunc) def DetermineTargetPercent(self, activeInsights): '''Will determine the target percent for each insight Args: activeInsights: The active insights to generate a target for''' result = {} # give equal weighting to each security count = sum(x.Direction != InsightDirection.Flat and self.RespectPortfolioBias(x) for x in activeInsights) percent = 0 if count == 0 else 1.0 / count for insight in activeInsights: result[insight] = (insight.Direction if self.RespectPortfolioBias(insight) else InsightDirection.Flat) * percent return result def RespectPortfolioBias(self, insight): '''Method that will determine if a given insight respects the portfolio bias Args: insight: The insight to create a target for ''' return self.portfolioBias == PortfolioBias.LongShort or insight.Direction == self.portfolioBias # Your New Python File
#region imports from AlgorithmImports import * #endregion from clr import AddReference AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Common") from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Algorithm.Framework.Alphas import * from datetime import timedelta class HistoricalReturnsAlphaModel(AlphaModel): '''Uses Historical returns to create insights.''' def __init__(self, *args, **kwargs): '''Initializes a new default instance of the HistoricalReturnsAlphaModel class. Args: lookback(int): Historical return lookback period resolution: The resolution of historical data''' self.lookback = kwargs['lookback'] if 'lookback' in kwargs else 1 self.resolution = kwargs['resolution'] if 'resolution' in kwargs else Resolution.Daily self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), self.lookback) self.symbolDataBySymbol = {} def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): if symbolData.CanEmit: direction = InsightDirection.Flat magnitude = symbolData.Return if magnitude > 0: direction = InsightDirection.Up if magnitude < 0: direction = InsightDirection.Down insights.append(Insight.Price(symbol, self.predictionInterval, direction, magnitude, None)) return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # clean up data for removed securities for removed in changes.RemovedSecurities: symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None) if symbolData is not None: symbolData.RemoveConsolidators(algorithm) # initialize data for added securities symbols = [ x.Symbol for x in changes.AddedSecurities ] history = algorithm.History(symbols, self.lookback, self.resolution) if history.empty: return tickers = history.index.levels[0] for ticker in tickers: symbol = SymbolCache.GetSymbol(ticker) if symbol not in self.symbolDataBySymbol: symbolData = SymbolData(symbol, self.lookback) self.symbolDataBySymbol[symbol] = symbolData symbolData.RegisterIndicators(algorithm, self.resolution) symbolData.WarmUpIndicators(history.loc[ticker]) class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, lookback): self.Symbol = symbol self.ROC = RateOfChange('{}.ROC({})'.format(symbol, lookback), lookback) self.Consolidator = None self.previous = 0 def RegisterIndicators(self, algorithm, resolution): self.Consolidator = algorithm.ResolveConsolidator(self.Symbol, resolution) algorithm.RegisterIndicator(self.Symbol, self.ROC, self.Consolidator) def RemoveConsolidators(self, algorithm): if self.Consolidator is not None: algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator) def WarmUpIndicators(self, history): for tuple in history.itertuples(): self.ROC.Update(tuple.Index, tuple.close) @property def Return(self): return float(self.ROC.Current.Value) @property def CanEmit(self): if self.previous == self.ROC.Samples: return False self.previous = self.ROC.Samples return self.ROC.IsReady def __str__(self, **kwargs): return '{}: {:.2%}'.format(self.ROC.Name, (1 + self.Return)**252 - 1)
#region imports from AlgorithmImports import * #endregion from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Common") AddReference("QuantConnect.Indicators") from System import * from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Portfolio import * from Portfolio.MinimumVariancePortfolioOptimizer import MinimumVariancePortfolioOptimizer from datetime import timedelta import numpy as np import pandas as pd ### <summary> ### Provides an implementation of Mean-Variance portfolio optimization based on modern portfolio theory. ### The default model uses the MinimumVariancePortfolioOptimizer that accepts a 63-row matrix of 1-day returns. ### </summary> class MeanVarianceOptimizationPortfolioConstructionModel(PortfolioConstructionModel): def __init__(self, rebalance = Resolution.Daily, portfolioBias = PortfolioBias.LongShort, lookback = 1, period = 63, resolution = Resolution.Daily, targetReturn = 0.02, optimizer = None): """Initialize the model Args: rebalance: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function. If None will be ignored. The function returns the next expected rebalance time for a given algorithm UTC DateTime. The function returns null if unknown, in which case the function will be called again in the next loop. Returning current time will trigger rebalance. portfolioBias: Specifies the bias of the portfolio (Short, Long/Short, Long) lookback(int): Historical return lookback period period(int): The time interval of history price to calculate the weight resolution: The resolution of the history price optimizer(class): Method used to compute the portfolio weights""" self.lookback = lookback self.period = period self.resolution = resolution self.portfolioBias = portfolioBias self.sign = lambda x: -1 if x < 0 else (1 if x > 0 else 0) lower = 0 if portfolioBias == PortfolioBias.Long else -1 upper = 0 if portfolioBias == PortfolioBias.Short else 1 self.optimizer = MinimumVariancePortfolioOptimizer(lower, upper, targetReturn) if optimizer is None else optimizer self.symbolDataBySymbol = {} # If the argument is an instance of Resolution or Timedelta # Redefine rebalancingFunc rebalancingFunc = rebalance if isinstance(rebalance, int): rebalance = Extensions.ToTimeSpan(rebalance) if isinstance(rebalance, timedelta): rebalancingFunc = lambda dt: dt + rebalance if rebalancingFunc: self.SetRebalancingFunc(rebalancingFunc) def ShouldCreateTargetForInsight(self, insight): if len(PortfolioConstructionModel.FilterInvalidInsightMagnitude(self.Algorithm, [insight])) == 0: return False symbolData = self.symbolDataBySymbol.get(insight.Symbol) if insight.Magnitude is None: self.algorithm.SetRunTimeError(ArgumentNullException('MeanVarianceOptimizationPortfolioConstructionModel does not accept \'None\' as Insight.Magnitude. Please checkout the selected Alpha Model specifications.')) return False symbolData.Add(self.Algorithm.Time, insight.Magnitude) return True def DetermineTargetPercent(self, activeInsights): """ Will determine the target percent for each insight Args: Returns: """ targets = {} symbols = [insight.Symbol for insight in activeInsights] # Create a dictionary keyed by the symbols in the insights with an pandas.Series as value to create a data frame returns = { str(symbol) : data.Return for symbol, data in self.symbolDataBySymbol.items() if symbol in symbols } returns = pd.DataFrame(returns) # The portfolio optimizer finds the optional weights for the given data weights = self.optimizer.Optimize(returns) weights = pd.Series(weights, index = returns.columns) # Create portfolio targets from the specified insights for insight in activeInsights: weight = weights[str(insight.Symbol)] # don't trust the optimizer if self.portfolioBias != PortfolioBias.LongShort and self.sign(weight) != self.portfolioBias: weight = 0 targets[insight] = weight return targets def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # clean up data for removed securities super().OnSecuritiesChanged(algorithm, changes) for removed in changes.RemovedSecurities: symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None) symbolData.Reset() # initialize data for added securities symbols = [ x.Symbol for x in changes.AddedSecurities ] history = algorithm.History(symbols, self.lookback * self.period, self.resolution) if history.empty: return tickers = history.index.levels[0] for ticker in tickers: symbol = SymbolCache.GetSymbol(ticker) if symbol not in self.symbolDataBySymbol: symbolData = self.MeanVarianceSymbolData(symbol, self.lookback, self.period) symbolData.WarmUpIndicators(history.loc[ticker]) self.symbolDataBySymbol[symbol] = symbolData class MeanVarianceSymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, lookback, period): self.symbol = symbol self.roc = RateOfChange(f'{symbol}.ROC({lookback})', lookback) self.roc.Updated += self.OnRateOfChangeUpdated self.window = RollingWindow[IndicatorDataPoint](period) def Reset(self): self.roc.Updated -= self.OnRateOfChangeUpdated self.roc.Reset() self.window.Reset() def WarmUpIndicators(self, history): for tuple in history.itertuples(): self.roc.Update(tuple.Index, tuple.close) def OnRateOfChangeUpdated(self, roc, value): if roc.IsReady: self.window.Add(value) def Add(self, time, value): item = IndicatorDataPoint(self.symbol, time, value) self.window.Add(item) @property def Return(self): return pd.Series( data = [(1 + float(x.Value))**252 - 1 for x in self.window], index = [x.EndTime for x in self.window]) @property def IsReady(self): return self.window.IsReady def __str__(self, **kwargs): return '{}: {:.2%}'.format(self.roc.Name, (1 + self.window[0])**252 - 1)
#region imports from AlgorithmImports import * #endregion from clr import AddReference AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Indicators") from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Alphas import * class EmaCrossAlphaModel(AlphaModel): '''Alpha model that uses an EMA cross to create insights''' def __init__(self, fastPeriod = 12, slowPeriod = 26, resolution = Resolution.Daily): '''Initializes a new instance of the EmaCrossAlphaModel class Args: fastPeriod: The fast EMA period slowPeriod: The slow EMA period''' self.fastPeriod = fastPeriod self.slowPeriod = slowPeriod self.resolution = resolution self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod) self.symbolDataBySymbol = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, resolutionString) def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): if symbolData.Fast.IsReady and symbolData.Slow.IsReady: if symbolData.FastIsOverSlow: if symbolData.Slow > symbolData.Fast: insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Down)) elif symbolData.SlowIsOverFast: if symbolData.Fast > symbolData.Slow: insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up)) symbolData.FastIsOverSlow = symbolData.Fast > symbolData.Slow return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' for added in changes.AddedSecurities: symbolData = self.symbolDataBySymbol.get(added.Symbol) if symbolData is None: # create fast/slow EMAs symbolData = SymbolData(added) symbolData.Fast = algorithm.EMA(added.Symbol, self.fastPeriod, self.resolution) symbolData.Slow = algorithm.EMA(added.Symbol, self.slowPeriod, self.resolution) self.symbolDataBySymbol[added.Symbol] = symbolData else: # a security that was already initialized was re-added, reset the indicators symbolData.Fast.Reset() symbolData.Slow.Reset() class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, security): self.Security = security self.Symbol = security.Symbol self.Fast = None self.Slow = None # True if the fast is above the slow, otherwise false. # This is used to prevent emitting the same signal repeatedly self.FastIsOverSlow = False @property def SlowIsOverFast(self): return not self.FastIsOverSlow # Your New Python File
#region imports from AlgorithmImports import * #endregion # 0. LOAD LIBRARIES from System import * from QuantConnect import * from QuantConnect.Orders import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Execution import * from QuantConnect.Algorithm.Framework.Risk import * from QuantConnect.Algorithm.Framework.Selection import * #from HistoricalReturnsAlphaModel import HistoricalReturnsAlphaModel #from ema_Alpha_Model import EmaCrossAlphaModel #from Equal_weight_Portfolio import EqualWeightingPortfolioConstructionModel #from MeanVarianceOptimizationPortfolioConstructionModel import MeanVarianceOptimizationPortfolioConstructionModel #from Portfolio.BlackLittermanOptimizationPortfolioConstructionModel import BlackLittermanOptimizationPortfolioConstructionModel import numpy as np import pandas as pd from scipy.optimize import minimize class MeanVarianceOptimizationAlgorithm(QCAlgorithmFramework): # 1. INITIALIZATION def Initialize(self): self.SetStartDate(2022, 1, 1) self.SetEndDate(2024, 3, 31) self._cash = 100000 self.SetCash(self._cash) #2.1. UNIVERSE SELECTION self.UniverseSettings.Resolution = Resolution.Daily symbols = [ # OUR INVESTMENT UNIVERSE # FACTORS Symbol.Create("USMV", SecurityType.Equity, Market.USA), Symbol.Create("DGRO", SecurityType.Equity, Market.USA), Symbol.Create("QUAL", SecurityType.Equity, Market.USA), Symbol.Create("DVY", SecurityType.Equity, Market.USA), Symbol.Create("MTUM", SecurityType.Equity, Market.USA), Symbol.Create("VLUE", SecurityType.Equity, Market.USA), Symbol.Create("EFAV", SecurityType.Equity, Market.USA), Symbol.Create("EEMV", SecurityType.Equity, Market.USA), Symbol.Create("IDV", SecurityType.Equity, Market.USA), Symbol.Create("DVY", SecurityType.Equity, Market.USA), Symbol.Create("IQLT", SecurityType.Equity, Market.USA), # MARKET Symbol.Create("SPY", SecurityType.Equity, Market.USA)] self.AddUniverseSelection( ManualUniverseSelectionModel(symbols) ) # 2.2. OPTIMIZATION "STYLE" #self.minimum_weight = -1 #self.maximum_weight = 1 self.SetWarmup(15) # 2.3. ALPHA MODEL self.SetAlpha( HistoricalReturnsAlphaModel(lookback = 4, resolution = Resolution.Daily) ) # 2.4. PORTFOLIO CONSTRUCTION MODEL self.SetPortfolioConstruction( MeanVarianceOptimizationPortfolioConstructionModel(resolution = Resolution.Daily, portfolio_bias=PortfolioBias.LONG, target_return=0.03) ) #2.5. EXECUTION MODEL self.SetExecution(ImmediateExecutionModel()) #2.6. BENCHMARKING FOR PLOTTING self._benchmark = self.AddEquity("SPY", Resolution.Daily).Symbol self._benchmarkInitial = self.History(self._benchmark, 1, Resolution.Daily) self._benchmarkPrice = self._benchmarkInitial['close'][0] def OnData(self,data): # 2.7 PLOTTING self.Plot("Relative Performance", "SPY", self._cash*self.Securities["SPY"].Close/self._benchmarkPrice) self.Plot("Relative Performance", "Portfolio Value", self.Portfolio.TotalPortfolioValue)