Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -2.033 Tracking Error 0.103 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
from clr import AddReference AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Logging") AddReference("QuantConnect.Common") from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Logging import Log from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Alphas import * class MuscularFluorescentYellowRabbit(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 1, 1) self.SetEndDate(2021, 11, 15) # self.SetAccountCurrency("USDT") self.SetCash(100000) self.resolution = Resolution.Hour self.UniverseSettings.Resolution = self.resolution self.UniverseSettings.Leverage = 3 self.SetTimeZone(TimeZones.Utc) self.AddCrypto('BTCUSDT', self.resolution, Market.Binance) self.SetBrokerageModel(BrokerageName.QuantConnectBrokerage, AccountType.Margin) self.itr = 0 def HourBarHandler(self, sender, bar): self.consolidated_bars[bar.Symbol] = bar def OnData(self, data): ''' OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' self.SetHoldings('BTCUSDT', -0.1)