Overall Statistics |
Total Orders 212 Average Win 0.50% Average Loss -0.40% Compounding Annual Return 1.889% Drawdown 5.300% Expectancy 0.273 Start Equity 110000.00 End Equity 123020.44 Net Profit 11.837% Sharpe Ratio -0.232 Sortino Ratio -0.278 Probabilistic Sharpe Ratio 16.415% Loss Rate 43% Win Rate 57% Profit-Loss Ratio 1.25 Alpha -0.032 Beta 0.023 Annual Standard Deviation 0.032 Annual Variance 0.001 Information Ratio -1.74 Tracking Error 0.635 Treynor Ratio -0.324 Total Fees $2024.21 Estimated Strategy Capacity $43000000.00 Lowest Capacity Asset BTCUSDT 18N Portfolio Turnover 0.77% |
from AlgorithmImports import * from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import numpy as np import pandas as pd class BTCUSDTLinearRegressionAlgo(QCAlgorithm): def Initialize(self): # 1. Algorithm Parameters self.SetStartDate(2019, 1, 1) self.SetEndDate(2024, 12, 31) self.SetCash("USDT", 10000) # Optional: Set Binance brokerage model for a cash account self.SetBrokerageModel(BrokerageName.Binance, AccountType.Cash) # 2. Add BTC/USDT from Binance, Daily Resolution (produces QuoteBars) self.symbol = self.AddCrypto("BTCUSDT", Resolution.Daily, Market.Binance).Symbol # 3. RollingWindow to store the last 200 QuoteBars self.data = RollingWindow[QuoteBar](200) # 4. Warm-up to get 200 bars before starting trading self.SetWarmUp(200) # 5. Initialize ML Model self.model = LinearRegression() self.training_count = 0 self.is_model_trained = False # 6. Configurable parameter: fraction of available cash to spend when buying # Adjust this to 0.90 (90%), 0.99 (99%), etc., as you see fit self.allocationFraction = 0.50 # 7. Configurable Training Frequency: "Daily" or "4H" or "6H" self.trainingFrequency = "4H" # Train 4 times/day self.ConfigureTrainingSchedule() def ConfigureTrainingSchedule(self): """Schedules the TrainModel() calls according to the desired frequency.""" if self.trainingFrequency == "Daily": # Train once per day at 00:00 UTC self.Schedule.On( self.DateRules.EveryDay(self.symbol), self.TimeRules.At(0, 0), self.TrainModel ) elif self.trainingFrequency == "6H": # Train every 6 hours: 00:00, 06:00, 12:00, 18:00 (UTC) for hour in [0, 6, 12, 18]: self.Schedule.On( self.DateRules.EveryDay(self.symbol), self.TimeRules.At(hour, 0), self.TrainModel ) elif self.trainingFrequency == "4H": # Train every 4 hours: 00:00, 04:00, 08:00, 12:00, 16:00, 20:00 (UTC) for hour in [0, 4, 8, 12, 16, 20]: self.Schedule.On( self.DateRules.EveryDay(self.symbol), self.TimeRules.At(hour, 0), self.TrainModel ) else: self.Debug(f"Unknown training frequency: {self.trainingFrequency}. Using daily by default.") self.Schedule.On( self.DateRules.EveryDay(self.symbol), self.TimeRules.At(0, 0), self.TrainModel ) def OnData(self, data): # 8. Ensure we have QuoteBars for the symbol if not data.QuoteBars.ContainsKey(self.symbol): return quote_bar = data.QuoteBars[self.symbol] if quote_bar is None: return # 9. Add the QuoteBar to our rolling window self.data.Add(quote_bar) # 10. Wait until rolling window is ready if not self.data.IsReady or self.data.Count < 200: return # 11. Skip predictions if the model is not trained if not self.is_model_trained: self.Debug("Model not trained yet. Skipping prediction.") return # 12. Retrieve the latest feature vector df = self.GetFeatureDataFrame() if df is None or len(df) < 1: return latest_features = df.iloc[-1, :-1].values.reshape(1, -1) # 13. Prediction: continuous → binary threshold at 0.5 try: prediction_value = self.model.predict(latest_features)[0] prediction = 1 if prediction_value > 0.5 else 0 except Exception as e: self.Debug(f"Model prediction failed: {e}") return # 14. Trading Logic: manually calculate quantity holdings = self.Portfolio[self.symbol].Quantity current_price = quote_bar.Close # mid-price from the QuoteBar if prediction == 1 and not self.Portfolio.Invested: # Buy up to allocationFraction of current USDT available_usdt = self.Portfolio.CashBook["USDT"].Amount * self.allocationFraction if available_usdt > 0 and current_price > 0: quantity_to_buy = available_usdt / current_price self.MarketOrder(self.symbol, quantity_to_buy) elif prediction == 0 and self.Portfolio.Invested: # If we have BTC and the model says sell, liquidate self.Liquidate(self.symbol) def TrainModel(self): # 15. Prepare data for training df = self.GetFeatureDataFrame() if df is None or len(df) < 50: self.Debug("Insufficient data for training.") return # Separate features (X) and label (y) X = df.iloc[:, :-1] y = df.iloc[:, -1] # Chronological split: 80% train, 20% test X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, shuffle=False, random_state=42 ) # 16. Train the Linear Regression model self.model.fit(X_train, y_train) self.is_model_trained = True # 17. Evaluate performance (threshold regression to binary for accuracy) y_train_pred = self.model.predict(X_train) y_train_pred_binary = [1 if val > 0.5 else 0 for val in y_train_pred] train_accuracy = accuracy_score(y_train, y_train_pred_binary) y_test_pred = self.model.predict(X_test) y_test_pred_binary = [1 if val > 0.5 else 0 for val in y_test_pred] test_accuracy = accuracy_score(y_test, y_test_pred_binary) self.training_count += 1 self.Debug(f"Training #{self.training_count}: " f"Train Accuracy: {train_accuracy:.2%}, " f"Test Accuracy: {test_accuracy:.2%}") def GetFeatureDataFrame(self): # Need 200 bars in rolling window if self.data.Count < 200: return None # Extract the midpoint close from QuoteBars close_prices = [qb.Close for qb in self.data] df = pd.DataFrame(close_prices, columns=["Close"]) # --- Feature Engineering --- df["SMA_10"] = df["Close"].rolling(window=10).mean() df["SMA_50"] = df["Close"].rolling(window=50).mean() # RSI(14) delta = df["Close"].diff() gain = (delta.where(delta > 0, 0)).rolling(14).mean() loss = (-delta.where(delta < 0, 0)).rolling(14).mean() rs = gain / loss df["RSI"] = 100 - (100 / (1 + rs)) # MACD & Signal df["MACD"] = df["Close"].ewm(span=12, adjust=False).mean() - df["Close"].ewm(span=26, adjust=False).mean() df["MACD_Signal"] = df["MACD"].ewm(span=9, adjust=False).mean() # Historical Volatility (HV_30) df["HV_30"] = df["Close"].pct_change().rolling(window=30).std() * np.sqrt(252) # Binary target: next day's Close > today's => 1, else 0 df["Target"] = (df["Close"].shift(-1) > df["Close"]).astype(int) # Remove NaN rows introduced by rolling calculations df.dropna(inplace=True) return df