Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -1.857 Tracking Error 0.113 Treynor Ratio 0 Total Fees $0.00 |
class NadionOptimizedEngine(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 11, 15) self.tsla = Symbol.Create("TSLA", SecurityType.Equity, Market.USA) self.SetUniverseSelection(FineFundamentalUniverseSelectionModel(self.CoarseSelectionFunction, self.FineSelectionFunction, None, None)) def CoarseSelectionFunction(self, coarse): sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)[:5] return [ x.Symbol for x in sortedByDollarVolume ] + [self.tsla] def FineSelectionFunction(self, fine): tsla_pe = None for f in fine: self.Log(f"PE of {f.Symbol}: {f.ValuationRatios.PERatio}") if f.Symbol == self.tsla: tsla_pe = f.ValuationRatios.PERatio if tsla_pe is None: return [] return [f.Symbol for f in fine if f.Symbol != self.tsla and f.ValuationRatios.PERatio > tsla_pe]