Overall Statistics |
Total Trades 5589 Average Win 0.24% Average Loss -0.04% Compounding Annual Return 13.992% Drawdown 31.300% Expectancy 1.373 Net Profit 317.938% Sharpe Ratio 0.82 Probabilistic Sharpe Ratio 20.766% Loss Rate 65% Win Rate 35% Profit-Loss Ratio 5.76 Alpha 0.143 Beta -0.112 Annual Standard Deviation 0.155 Annual Variance 0.024 Information Ratio -0.065 Tracking Error 0.23 Treynor Ratio -1.133 Total Fees $6920.25 Estimated Strategy Capacity $340000.00 Lowest Capacity Asset FORTY R735QTJ8XC9X |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2020 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import statistics as stat import pickle from collections import deque class DynamicCalibratedGearbox(QCAlgorithm): def Initialize(self): ### IMPORTANT: FOR USERS RUNNING THIS ALGORITHM IN LIVE TRADING, ### RUN THE BACKTEST ONCE self.tech_ROA_key = 'TECH_ROA' # we need 3 extra years to warmup our ROA values self.SetStartDate(2010, 9, 1) self.SetEndDate(2021, 8, 1) self.SetCash(100000) # Set Strategy Cash self.SetBrokerageModel(AlphaStreamsBrokerageModel()) self.SetAlpha(ConstantAlphaModel(InsightType.Price, InsightDirection.Up, timedelta(days=31))) self.SetExecution(ImmediateExecutionModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(lambda time:None)) self.AddUniverseSelection( FineFundamentalUniverseSelectionModel(self.CoarseFilter, self.FineFilter) ) self.UniverseSettings.Resolution = Resolution.Daily self.SetRiskManagement(MaximumUnrealizedProfitPercentPerSecurity(0.05)) self.curr_month = -1 # store ROA of tech stocks self.tech_ROA = {} self.symbols = None if self.LiveMode and not self.ObjectStore.ContainsKey(self.tech_ROA_key): self.Quit('QUITTING: USING LIVE MOVE WITHOUT TECH_ROA VALUES IN OBJECT STORE') self.quarters = 0 def OnEndOfAlgorithm(self): self.Log('Algorithm End') self.SaveData() def SaveData(self): ''' Saves the tech ROA data to ObjectStore ''' # Symbol objects aren't picklable, hence why we use the ticker string tech_ROA = {symbol.Value:ROA for symbol, ROA in self.tech_ROA.items()} self.ObjectStore.SaveBytes(self.tech_ROA_key, pickle.dumps(tech_ROA)) def CoarseFilter(self, coarse): # load data from ObjectStore if len(self.tech_ROA) == 0 and self.ObjectStore.ContainsKey(self.tech_ROA_key): tech_ROA = self.ObjectStore.ReadBytes(self.tech_ROA_key) tech_ROA = pickle.loads(bytearray(tech_ROA)) self.tech_ROA = {Symbol.Create(ticker, SecurityType.Equity, Market.USA):ROA for ticker, ROA in tech_ROA.items()} return list(self.tech_ROA.keys()) if self.curr_month == self.Time.month: return Universe.Unchanged self.curr_month = self.Time.month # we only want to update our ROA values every three months if self.Time.month % 3 != 1: return Universe.Unchanged self.quarters += 1 return [c.Symbol for c in coarse if c.HasFundamentalData] def FineFilter(self, fine): # book value == FinancialStatements.BalanceSheet.NetTangibleAssets (book value and NTA are synonyms) # BM (Book-to-Market) == book value / MarketCap # ROA == OperationRatios.ROA # CFROA == FinancialStatements.CashFlowStatement.OperatingCashFlow / FinancialStatements.BalanceSheet.TotalAssets # R&D to MktCap == FinancialStatements.IncomeStatement.ResearchAndDevelopment / MarketCap # CapEx to MktCap == FinancialStatements.CashFlowStatement.CapExReported / MarketCap # Advertising to MktCap == FinancialStatements.IncomeStatement.SellingGeneralAndAdministration / MarketCap # note: this parameter may be slightly higher than pure advertising costs tech_securities = [f for f in fine if f.AssetClassification.MorningstarSectorCode == MorningstarSectorCode.Technology and f.OperationRatios.ROA.ThreeMonths] for security in tech_securities: # we use deques instead of RWs since deques are picklable symbol = security.Symbol if symbol not in self.tech_ROA: # 3 years * 4 quarters = 12 quarters of data self.tech_ROA[symbol] = deque(maxlen=12) self.tech_ROA[symbol].append(security.OperationRatios.ROA.ThreeMonths) if self.LiveMode: # this ensures we don't lose new data from an algorithm outage self.SaveData() # we want to rebalance in the fourth month after the (fiscal) year ends # so that we have the most recent quarter's data if self.Time.month != 4 or (self.quarters < 12 and not self.LiveMode): return Universe.Unchanged # make sure our stocks has these fundamentals tech_securities = [x for x in tech_securities if x.OperationRatios.ROA.OneYear and x.FinancialStatements.CashFlowStatement.OperatingCashFlow.TwelveMonths and x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths and x.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths and x.FinancialStatements.CashFlowStatement.CapExReported.TwelveMonths and x.FinancialStatements.IncomeStatement.SellingGeneralAndAdministration.TwelveMonths and x.MarketCap] # compute the variance of the ROA for each tech stock tech_VARROA = {symbol:stat.variance(ROA) for symbol, ROA in self.tech_ROA.items() if len(ROA) == ROA.maxlen} if len(tech_VARROA) < 2: return Universe.Unchanged tech_VARROA_median = stat.median(tech_VARROA.values()) # we will now map tech Symbols to various fundamental ratios, # and compute the median for each ratio # ROA 1-year tech_ROA1Y = {x.Symbol:x.OperationRatios.ROA.OneYear for x in tech_securities} tech_ROA1Y_median = stat.median(tech_ROA1Y.values()) # Cash Flow ROA tech_CFROA = {x.Symbol: ( x.FinancialStatements.CashFlowStatement.OperatingCashFlow.TwelveMonths / x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths ) for x in tech_securities} tech_CFROA_median = stat.median(tech_CFROA.values()) # R&D to MktCap tech_RD2MktCap = {x.Symbol: ( x.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths / x.MarketCap ) for x in tech_securities} tech_RD2MktCap_median = stat.median(tech_RD2MktCap.values()) # CapEx to MktCap tech_CaPex2MktCap = {x.Symbol: ( x.FinancialStatements.CashFlowStatement.CapExReported.TwelveMonths / x.MarketCap ) for x in tech_securities} tech_CaPex2MktCap_median = stat.median(tech_CaPex2MktCap.values()) # Advertising to MktCap tech_Ad2MktCap = {x.Symbol: ( x.FinancialStatements.IncomeStatement.SellingGeneralAndAdministration.TwelveMonths / x.MarketCap ) for x in tech_securities} tech_Ad2MktCap_median = stat.median(tech_Ad2MktCap.values()) # sort fine by book-to-market ratio, get lower quintile has_book = [f for f in fine if f.FinancialStatements.BalanceSheet.NetTangibleAssets.TwelveMonths and f.MarketCap] sorted_by_BM = sorted(has_book, key=lambda x: x.FinancialStatements.BalanceSheet.NetTangibleAssets.TwelveMonths / x.MarketCap)[:len(has_book)//4] # choose tech stocks from lower quintile tech_symbols = [f.Symbol for f in sorted_by_BM if f in tech_securities] ratioDicts_medians = [(tech_ROA1Y, tech_ROA1Y_median), (tech_CFROA, tech_CFROA_median), (tech_RD2MktCap, tech_RD2MktCap_median), (tech_CaPex2MktCap, tech_CaPex2MktCap_median), (tech_Ad2MktCap, tech_Ad2MktCap_median)] def compute_g_score(symbol): g_score = 0 if tech_CFROA[symbol] > tech_ROA1Y[symbol]: g_score += 1 if symbol in tech_VARROA and tech_VARROA[symbol] < tech_VARROA_median: g_score += 1 for ratio_dict, median in ratioDicts_medians: if symbol in ratio_dict and ratio_dict[symbol] > median: g_score += 1 return g_score # compute g-scores for each symbol g_scores = {symbol:compute_g_score(symbol) for symbol in tech_symbols} return [symbol for symbol, g_score in g_scores.items() if g_score >= 5]