Overall Statistics |
Total Trades 94 Average Win 12.73% Average Loss -2.65% Compounding Annual Return 31.940% Drawdown 46.100% Expectancy 0.640 Net Profit 74.346% Sharpe Ratio 0.808 Probabilistic Sharpe Ratio 30.978% Loss Rate 72% Win Rate 28% Profit-Loss Ratio 4.80 Alpha 0.293 Beta -0.001 Annual Standard Deviation 0.362 Annual Variance 0.131 Information Ratio 0.683 Tracking Error 0.413 Treynor Ratio -200.928 Total Fees $0.00 |
# Pierre Pohly # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import clr clr.AddReference("System") clr.AddReference("QuantConnect.Algorithm") clr.AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * import tensorflow as tf tf.config.threading.set_inter_op_parallelism_threads(2) tf.config.threading.set_intra_op_parallelism_threads(1) import json import numpy as np import pandas as pd from io import StringIO from keras.models import Sequential from keras.layers import Dense, Activation,LSTM,Dropout,Embedding,Flatten from keras.optimizers import SGD, Adam from keras.utils.generic_utils import serialize_keras_object from sklearn.preprocessing import MinMaxScaler class SimpleEnergyTroll(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 4, 1) # Set Start Date self.SetEndDate(2020, 4, 1) # Set End Date self.SetCash(100000) # Set Strategy Cash self.contracts = {} self.modelBySymbol = {} self.scalersBySymbol = {} # In Initialize for ticker in ["BTCUSD", "ETHUSD"]: #, "LTCUSD"]: symbol = self.AddCrypto(ticker, Resolution.Hour, Market.GDAX).Symbol self.modelBySymbol[symbol] = None # Read the model saved in the ObjectStore if self.ObjectStore.ContainsKey(f'{symbol}_model'): modelStr = self.ObjectStore.Read(f'{symbol}_model') config = json.loads(modelStr)['config'] model = Sequential.from_config(config) adam = Adam(lr=0.001, clipnorm=1.0) model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']) self.modelBySymbol[symbol] = model # Look-back period for training set self.lookback = 24 * 12 # Timesteps defines how much features will feed to the network self.timesteps = 24 # Train Neural Network every monday self.Train( self.DateRules.Every(DayOfWeek.Monday, DayOfWeek.Thursday, DayOfWeek.Wednesday, DayOfWeek.Thursday, DayOfWeek.Friday), self.TimeRules.At(2, 0), self.NeuralNetworkTraining) # Place trades every Weekday, 30 minutes after the market is open self.Train(self.DateRules.Every(DayOfWeek.Monday, DayOfWeek.Thursday, DayOfWeek.Wednesday, DayOfWeek.Thursday, DayOfWeek.Friday), \ #self.TimeRules.At(4, 0), \ self.TimeRules.Every(TimeSpan.FromMinutes(60)), \ Action(self.Trade)) # Explore the future contract chain #def OnData(self, slice): #self.contracts = {} #for chain in slice.FutureChains: # contract = list(chain.Value)[0] # self.contracts[contract.Symbol] = contract def OnEndOfAlgorithm(self): ''' Save the data and the mode using the ObjectStore ''' for symbol, model in self.modelBySymbol.items(): modelStr = json.dumps(serialize_keras_object(model)) self.ObjectStore.Save(f'{symbol}_model', modelStr) self.Debug(f'Model for {symbol} sucessfully saved in the ObjectStore') def NeuralNetworkTraining(self): '''Train the Neural Network and save the model in the ObjectStore''' symbols = list(self.modelBySymbol.keys()) if len(symbols) == 0: self.Debug("no contracts found") return for symbol in symbols: try: # Hourly historical data is used to train the machine learning model history = self.History(symbol, (self.lookback + self.timesteps), Resolution.Hour) self.Debug(history) except: self.Debug("Failed to receive history") #history = self.x_scaler.fit_transform(history) if 'open' in history and 'close' in history and 'high' in history and 'low' in history: history = np.column_stack((history['open'], history['close'], history['high'], history['low'])) #history = np.column_stack((history['open'])) if len(history) < self.lookback: self.Debug("Error while collecting the training data") continue #history = list([i[0] for i in history]) #self.Debug("Start Training for symbol {0}".format(symbol)) #First convert the data into 3D Array with (x train samples, 60 timesteps, 1 feature) x_train = [] y_train = [] for i in range(self.timesteps, len(history)): x_train.append(history[i - self.timesteps:i]) y_train.append([history[i][0]]) x_train, y_train = np.array(x_train), np.array(y_train) x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 4)) y_train = np.reshape(y_train, (y_train.shape[0], 1)) if np.any(np.isnan(x_train)): self.Debug("Error in Training Data") continue if np.any(np.isnan(y_train)): self.Debug("Error in Validation Data") continue x_scaler = MinMaxScaler(feature_range=(0, 1)) y_scaler = MinMaxScaler(feature_range=(0, 1)) x_train = x_scaler.fit_transform(x_train.reshape(-1, x_train.shape[-1])).reshape(x_train.shape) #x_train = self.x_scaler.fit_transform(x_train) y_train = y_scaler.fit_transform(y_train) #self.Debug(x_train.shape) #self.Debug(y_train.shape) #self.Debug(y_train) # build a neural network from the 1st layer to the last layer ''' model = Sequential() model.add(Dense(10, input_dim = 1)) model.add(Activation('relu')) model.add(Dense(1)) sgd = SGD(lr = 0.01) # learning rate = 0.01 # choose loss function and optimizing method model.compile(loss='mse', optimizer=sgd) ''' if symbol in self.modelBySymbol and self.modelBySymbol[symbol] is not None: model = self.modelBySymbol[symbol] iterations = 1 else: #If Model not exist for symbol then create one opt_cells = 5 model = Sequential() model.add(LSTM(units = opt_cells, return_sequences = True, input_shape = (x_train.shape[1], 4))) model.add(Dropout(0.2)) model.add(LSTM(units = opt_cells, return_sequences = True)) model.add(Dropout(0.2)) model.add(LSTM(units = opt_cells, return_sequences = True)) model.add(Dropout(0.2)) model.add(LSTM(units = opt_cells, return_sequences = False)) model.add(Dropout(0.2)) model.add(Dense(1, activation='linear')) adam = Adam(lr=0.001, clipnorm=1.0) model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']) iterations = 50 # pick an iteration number large enough for convergence for step in range(iterations): # training the model #cost = model.train_on_batch(predictor, predictand) hist = model.fit(x_train, y_train, epochs = 1) #verbose=0, acc = list(hist.history['accuracy'])[-1] loss = list(hist.history['loss'])[-1] self.scalersBySymbol[symbol] = (x_scaler, y_scaler) self.modelBySymbol[symbol] = model self.Debug("End Training for symbol {0} with accuracy {1}".format(symbol, acc)) def Trade(self): ''' Predict the price using the trained model and out-of-sample data Enter or exit positions based on relationship of the open price of the current bar and the prices defined by the machine learning model. Liquidate if the open price is below the sell price and buy if the open price is above the buy price ''' target = 1 / len(self.Securities) for symbol, model in self.modelBySymbol.items(): if model is None: continue # Get the out-of-sample history try: history = self.History(symbol, (self.lookback + self.timesteps), Resolution.Hour) except: self.Debug("Failed to receive history") #history = self.x_scaler.fit_transform(history) if 'open' in history and 'close' in history and 'high' in history and 'low' in history: history = np.column_stack((history['open'], history['close'], history['high'], history['low'])) #history = np.column_stack((history['open'])) if len(history) < self.lookback: self.Debug("Error while collecting the testing data") continue #history = self.x_scaler.fit_transform(history) #history = list([i[0] for i in history]) #if not 'open' in history: # continue #history = history['open'].to_list() #if len(history) < self.lookback: # self.Debug("Error while collecting the testing data") # continue #First convert the data into 3D Array with (x train samples, 60 timesteps, 1 feature) x_test = [] for i in range(self.timesteps, len(history)): x_test.append(history[i - self.timesteps:i]) x_test = np.array(x_test) x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 4)) if np.any(np.isnan(x_test)): self.Debug("Error in Testing Data") continue if symbol in self.scalersBySymbol and self.scalersBySymbol[symbol] is not None: x_scaler = self.scalersBySymbol[symbol][0] y_scaler = self.scalersBySymbol[symbol][1] else: continue x_test = x_scaler.transform(x_test.reshape(-1, x_test.shape[-1])).reshape(x_test.shape) #x_test = self.x_scaler.fit_transform(x_test) #self.Debug(x_test.shape) # Get the final predicted price #self.Debug(model.predict(history)) predictions = model.predict(x_test) #self.Debug(predictions) prediction = y_scaler.inverse_transform(predictions)[0][-1] historyStd = np.std(history) self.Debug("Prediction for symbol {0}: {1}".format(symbol, prediction)) holding = self.Portfolio[symbol] openPrice = self.Securities[symbol].Open; self.Debug("Open Price for symbol {0}: {1}".format(symbol, openPrice)) # Follow the trend if holding.Invested: #self.Debug("if {0} < {1}".format(openPrice, prediction - historyStd)) if openPrice < prediction - historyStd: self.Liquidate(symbol) else: self.Debug("if {0} > {1}".format(openPrice, prediction + historyStd)) if openPrice > prediction + historyStd: self.SetHoldings(symbol, target)