Overall Statistics |
Total Trades 243 Average Win 4.87% Average Loss -1.11% Compounding Annual Return 14.556% Drawdown 19.400% Expectancy 1.667 Net Profit 679.509% Sharpe Ratio 0.85 Probabilistic Sharpe Ratio 18.559% Loss Rate 50% Win Rate 50% Profit-Loss Ratio 4.38 Alpha 0.103 Beta 0.051 Annual Standard Deviation 0.126 Annual Variance 0.016 Information Ratio 0.143 Tracking Error 0.204 Treynor Ratio 2.113 Total Fees $5254.06 Estimated Strategy Capacity $520000.00 Lowest Capacity Asset BIL TT1EBZ21QWKL |
#region imports from AlgorithmImports import * import numpy as np import pandas as pd from collections import deque import pickle #endregion class InOut(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 1) self.cap = 100000 self.SetCash(self.cap) res = Resolution.Minute self.leverage = 2 # parameters for relative momentum self.LO, self.LD, self.LP, self.B, self.TO, self.TD = [6,12,0,1,1,1] # Additional check to see if market is trending higher than MA - if true, stay in, otherwise go out self.ma_eq, self.ma_prd = ['SPY', 6*21] # Holdings self.offensive = ['BIL','XLP','QQQ'] self.defensive = ['BIL','TLT'] self.safe = 'BIL' # repeat safe asset so it can be selected multiple times self.alldefensive = self.defensive + [self.safe] * max(0,self.TD - sum([1*(e==self.safe) for e in self.defensive])) self.trade_eq = list(set(self.offensive + self.alldefensive)) for eq in list(set(self.trade_eq+[self.ma_eq])): self.AddEquity(eq, res) # Market and list of signals based on ETFs self.MRKT = self.AddEquity('QQQ', res).Symbol # market self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials) self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals) self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res) self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield) self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD) self.GOLD = self.AddEquity('GLD', res).Symbol # gold self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver self.UTIL = self.AddEquity('XLU', res).Symbol # utilities self.INDU = self.PRDC # vs industrials self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.USDX, self.DEBT, self.MRKT] self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.INDU] self.pairlist = ['G_S', 'U_I'] # Initialize parameters and tracking variables self.lookback, self.shift_vars, self.stat_alpha, self.ema_f = [252*5, [11, 60, 45], 5, 2/(1+50)] self.be_in, self.portf_val, self.signal_dens, self.reg_slope = [[1], [self.cap], deque([0, 0, 0, 0, 0], maxlen = 50), deque([0, 0, 0, 0, 0], maxlen = 50)] self.be_in_date = [[self.Time, 1]] self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('QQQ', 120), self.inout_check) # Symbols for charts self.SPY = self.AddEquity('SPY', res).Symbol self.QQQ = self.AddEquity('QQQ', res).Symbol self.signal_eq = list(set(self.SIGNALS + self.FORPAIRS + [self.QQQ])) # Setup daily consolidation symbols = list(set(self.signal_eq + self.trade_eq + [self.SPY])) for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) # Warm up history self.history = self.History(symbols, self.lookback, Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0) self.update_history_shift() # Benchmarks for charts self.benchmarks = [self.history[eq].iloc[-2] for eq in [self.SPY,self.QQQ]] def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-self.lookback:] self.update_history_shift() def update_history_shift(self): self.history_shift = self.history.rolling(self.shift_vars[0], center=True).mean().shift(self.shift_vars[1]) def replace_tqqq(self): if self.Time.date() <= datetime.strptime('2010-02-09', '%Y-%m-%d').date(): self.HLD_IN[list(self.HLD_IN.keys())[0]] = 0; self.HLD_IN[list(self.HLD_IN.keys())[1]] = 1 else: self.HLD_IN[list(self.HLD_IN.keys())[0]] = 1; self.HLD_IN[list(self.HLD_IN.keys())[1]] = 0 def inout_check(self): if self.history.empty: return if Symbol.Create('TQQQ', SecurityType.Equity, Market.USA) in self.trade_eq: self.replace_tqqq() # Load saved signal density (for live interruptions): if self.LiveMode and sum(list(self.signal_dens))==0 and self.ObjectStore.ContainsKey('OS_signal_dens'): OS = self.ObjectStore.ReadBytes('OS_signal_dens') OS = pickle.loads(bytearray(OS)) self.signal_dens = deque(OS, maxlen = 100) # Returns sample to detect extreme observations sig_hist, sig_hist_shift = [self.history.loc[:,self.signal_eq],self.history_shift.loc[:,self.signal_eq]] returns_sample = (sig_hist / sig_hist_shift - 1).dropna() # Reverse code USDX: sort largest changes to bottom returns_sample[self.USDX] = returns_sample[self.USDX] * (-1) # For pairs, take returns differential, reverse coded returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA]) returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU]) # Extreme observations; statistical significance = X% (stat_alpha) extreme_b = returns_sample.iloc[-1] < np.nanpercentile(returns_sample, self.stat_alpha, axis=0) # Re-assess/disambiguate double-edged signals abovemedian = returns_sample.iloc[-1] > np.nanmedian(returns_sample, axis=0) ### Interest rate expectations (cost of debt) may increase because the economic outlook improves (showing in rising input prices) = actually not a negative signal extreme_b.loc[self.DEBT] = np.where((extreme_b.loc[self.DEBT].any()) & (abovemedian[[self.METL, self.NRES]].any()), False, extreme_b.loc[self.DEBT]) cur_signal_dens = extreme_b[self.SIGNALS + self.pairlist].sum() / len(self.SIGNALS + self.pairlist) add_dens = np.array((1-self.ema_f) * self.signal_dens[-1] + self.ema_f * cur_signal_dens) self.signal_dens.append(add_dens) # Determine whether 'in' or 'out' of the market if self.signal_dens[-1] > self.signal_dens[-2]: self.be_in.append(0) self.be_in_date.append([self.Time, 0]) # self.Log(f"{self.Time.date()} - ret len: {len(returns_sample)}; new signal OUT 0") if self.signal_dens[-1] < min(list(self.signal_dens)[-(self.shift_vars[2]):-2]): self.be_in.append(1) self.be_in_date.append([self.Time, 1]) # self.Log(f"{self.Time.date()} - ret len: {len(returns_sample)}; new signal IN 1") # Additional SPY check: if self.be_in[-1]: col_ind = self.history.columns.get_loc(self.ma_eq) if self.history.iloc[-1,col_ind] < (self.history.iloc[-self.ma_prd:,col_ind].mean()): self.be_in[-1] = 0 self.be_in_date[-1][1] = 0 # Get Trade weights and trade: wts = self.trade_wts(self.history,self.be_in[-1]) # trade self.trade(wts.to_dict()) # chart self.charts(extreme_b) # Save data: signal density from live trading for interruptions (note: backtest saves data at the end so that it's available for live trading). if self.LiveMode: self.SaveData() def trade(self, weight_by_sec): # sort: execute largest sells first, largest buys last hold_wt = {k: (self.Portfolio[k].Quantity*self.Portfolio[k].Price)/self.Portfolio.TotalPortfolioValue for k in self.Portfolio.Keys} order_wt = {k: weight_by_sec[k] - hold_wt.get(k, 0) for k in weight_by_sec} weight_by_sec = {k: weight_by_sec[k] for k in dict(sorted(order_wt.items(), key=lambda item: item[1]))} for sec, weight in weight_by_sec.items(): # Check that we have data in the algorithm to process a trade if not self.CurrentSlice.ContainsKey(sec) or self.CurrentSlice[sec] is None: continue # Only trade if holdings fundamentally change cond1 = (weight==0) and self.Portfolio[sec].IsLong cond2 = (weight>0) and not self.Portfolio[sec].Invested if cond1 or cond2: # w = weight * self.leverage if any(x in sec for x in ['XLP','QQQ']) else weight # self.SetHoldings(sec, w) self.SetHoldings(sec, weight) def charts(self, extreme_b): # Market comparisons # spy_perf = self.history[self.SPY].iloc[-1] / self.benchmarks[0] * self.cap # qqq_perf = self.history[self.QQQ].iloc[-1] / self.benchmarks[1] * self.cap # self.Plot('Strategy Equity', 'SPY', spy_perf) # self.Plot('Strategy Equity', 'QQQ', qqq_perf) # Signals # if self.be_in[-1] > 0. and self.be_in[-1] < 1.: # foo = 3 self.Plot("In Out", "in_market", self.be_in[-1]) # self.Plot("In Out", "signal_dens", self.signal_dens[-1]) # self.Plot("In Out", "reg_slope", self.reg_slope[-1]) # self.Plot("Signals", "PRDC", int(extreme_b[self.SIGNALS + self.pairlist][0])) # self.Plot("Signals", "METL", int(extreme_b[self.SIGNALS + self.pairlist][1])) # self.Plot("Signals", "NRES", int(extreme_b[self.SIGNALS + self.pairlist][2])) # self.Plot("Signals", "USDX", int(extreme_b[self.SIGNALS + self.pairlist][3])) # self.Plot("Signals", "DEBT", int(extreme_b[self.SIGNALS + self.pairlist][4])) # self.Plot("Signals", "MRKT", int(extreme_b[self.SIGNALS + self.pairlist][5])) # self.Plot("Signals", "G_S", int(extreme_b[self.SIGNALS + self.pairlist][6])) # self.Plot("Signals", "U_I", int(extreme_b[self.SIGNALS + self.pairlist][7])) # Comparison of out returns # self.portf_val.append(self.Portfolio.TotalPortfolioValue) # if not self.be_in[-1] and len(self.be_in)>=2: # period = np.where(np.array(self.be_in)[:-1] != np.array(self.be_in)[1:])[0][-1] - len(self.be_in) # mrkt_ret = self.history[self.MRKT].iloc[-1] / self.history[self.MRKT].iloc[period] - 1 # strat_ret = self.portf_val[-1] / self.portf_val[period] - 1 # strat_vs_mrkt = round(float(strat_ret - mrkt_ret), 4) # else: strat_vs_mrkt = 0 # self.Plot('Out return', 'PF vs MRKT', strat_vs_mrkt) def SaveData(self): self.ObjectStore.SaveBytes('OS_signal_dens', pickle.dumps(self.signal_dens)) def trade_wts(self,hist,pct_in): # only keep history of trade equities: hist = hist.loc[:,self.trade_eq].dropna() # initialize wts Series wts = pd.Series(0,index=hist.columns) # end of month values h_eom = (hist.loc[hist.groupby(hist.index.to_period('M')).apply(lambda x: x.index.max())] .iloc[:-1,:]) # ===================================== # get weights for offensive and defensive universes # ===================================== # determine weights of offensive universe if pct_in > 0: # price / SMA lookback = min(h_eom.shape[0],self.LO+1) mom_in = h_eom.iloc[-1,:].div(h_eom.iloc[[-t for t in range(1,lookback)]].mean(axis=0),axis=0) mom_in = mom_in.loc[self.offensive].sort_values(ascending=False) # equal weightings to top relative momentum securities in_wts = pd.Series(pct_in/self.TO,index=mom_in.index[:self.TO]) wts = pd.concat([wts, in_wts]) # determine weights of defensive universe if pct_in < 1: # price / SMA lookback = min(h_eom.shape[0],self.LD+1) mom_out = h_eom.iloc[-1,:].div(h_eom.iloc[[-t for t in range(1,lookback)]].mean(axis=0),axis=0) mom_out = mom_out.loc[self.alldefensive].sort_values(ascending=False) # equal weightings to top relative momentum securities out_wts = pd.Series((1-pct_in)/self.TD,index=mom_out.index[:self.TD]) wts = pd.concat([wts, out_wts]) wts = wts.groupby(wts.index).sum() return wts # def OnEndOfAlgorithm(self): # self.Log(self.be_in_date)