Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 781.96% Drawdown 4.500% Expectancy 0 Net Profit 0% Sharpe Ratio 11.225 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 3.024 Beta -1.86 Annual Standard Deviation 0.135 Annual Variance 0.018 Information Ratio 3.376 Tracking Error 0.207 Treynor Ratio -0.813 |
namespace QuantConnect { /// <summary> /// Custom Data Type: Bitcoin data from Quandl. /// http://www.quandl.com/help/api-for-bitcoin-data /// </summary> public class Bitcoin : BaseData { //Set the defaults: public decimal Open = 0; public decimal High = 0; public decimal Low = 0; public decimal Close = 0; public decimal VolumeBTC = 0; public decimal VolumeUSD = 0; public decimal WeightedPrice = 0; /// <summary> /// 1. DEFAULT CONSTRUCTOR: Custom data types need a default constructor. /// We search for a default constructor so please provide one here. It won't be used for data, just to generate the "Factory". /// </summary> public Bitcoin() { this.Symbol = "BTC"; } /// <summary> /// 2. RETURN THE STRING URL SOURCE LOCATION FOR YOUR DATA: /// This is a powerful and dynamic select source file method. If you have a large dataset, 10+mb we recommend you break it into smaller files. E.g. One zip per year. /// We can accept raw text or ZIP files. We read the file extension to determine if it is a zip file. /// </summary> /// <param name="config">Subscription data, symbol name, data type</param> /// <param name="date">Current date we're requesting. This allows you to break up the data source into daily files.</param> /// <param name="datafeed">Datafeed type: Backtesting or the Live data broker who will provide live data. You can specify a different source for live trading! </param> /// <returns>string URL end point.</returns> public override string GetSource(SubscriptionDataConfig config, DateTime date, DataFeedEndpoint datafeed) { switch (datafeed) { //Backtesting Data Source: Example of a data source which varies by day (commented out) default: case DataFeedEndpoint.Backtesting: //return "http://my-ftp-server.com/futures-data-" + date.ToString("Ymd") + ".zip"; // OR simply return a fixed small data file. Large files will slow down your backtest return "http://www.quandl.com/api/v1/datasets/BITCOIN/BITSTAMPUSD.csv?sort_order=asc"; case DataFeedEndpoint.LiveTrading: //Alternative live socket data source for live trading return "...."; } } /// <summary> /// 3. READER METHOD: Read 1 line from data source and convert it into Object. /// Each line of the CSV File is presented in here. The backend downloads your file, loads it into memory and then line by line /// feeds it into your algorithm /// </summary> /// <param name="line">string line from the data source file submitted above</param> /// <param name="config">Subscription data, symbol name, data type</param> /// <param name="date">Current date we're requesting. This allows you to break up the data source into daily files.</param> /// <param name="datafeed">Datafeed type - Backtesting or LiveTrading</param> /// <returns>New Bitcoin Object which extends BaseData.</returns> public override BaseData Reader(SubscriptionDataConfig config, string line, DateTime date, DataFeedEndpoint datafeed) { //New Bitcoin object Bitcoin coin = new Bitcoin(); try { //Example File Format: //Date, Open High Low Close Volume (BTC) Volume (Currency) Weighted Price //2011-09-13 5.8 6.0 5.65 5.97 58.37138238, 346.0973893944 5.929230648356 string[] data = line.Split(','); coin.Time = DateTime.Parse(data[0]); coin.Open = Convert.ToDecimal(data[1]); coin.High = Convert.ToDecimal(data[2]); coin.Low = Convert.ToDecimal(data[3]); coin.Close = Convert.ToDecimal(data[4]); coin.VolumeBTC = Convert.ToDecimal(data[5]); coin.VolumeUSD = Convert.ToDecimal(data[6]); coin.WeightedPrice = Convert.ToDecimal(data[7]); coin.Symbol = "BTC"; coin.Value = coin.Close; } catch { /* Do nothing, skip first title row */ } return coin; } } }
using System; using System.Windows; namespace QuantConnect { public class BinaryAlgorithm : QCAlgorithm { private decimal _cash = 2000; private decimal _entryPrice = 0; private decimal _stake = 20; bool shrt = false; bool lng = false; BollingerBands _bb; MovingAverageConvergenceDivergence _macd; private decimal wins; private decimal losses; RelativeStrengthIndex _rsi = new RelativeStrengthIndex(14); //SimpleMovingAverage _sma50, _sma20; // private decimal totalProfit; //private decimal loss; // private decimal finalPrice; ArrayList symbols = new ArrayList(); private Dictionary <string, MovingAverageConvergenceDivergence> macdDic = new Dictionary<string, MovingAverageConvergenceDivergence>(); private Dictionary <string, RelativeStrengthIndex> rsiDic = new Dictionary<string,RelativeStrengthIndex>(); private Dictionary <string, BollingerBands> bbDic = new Dictionary <string, BollingerBands>(); private Dictionary<string, DateTime> lastTimeDic = new Dictionary<string, DateTime>(); private Dictionary<string, decimal> entryPriceDic = new Dictionary<string, decimal> (); private Dictionary<string, decimal> winDic = new Dictionary<string, decimal> (); private Dictionary<string, decimal> lossDic = new Dictionary<string, decimal> (); private Dictionary<string, bool> shrtDic = new Dictionary<string, bool> (); private Dictionary<string, bool> lngDic = new Dictionary<string, bool> (); decimal _price; // decimal _bet; //private AroonOscillator _aroon; private DateTime lastTradeTime; public override void Initialize() { SetStartDate(2014,12,1); SetEndDate(2015,1,1); symbols.Add("EURUSD"); //symbols.Add("EURJPY"); SetCash(_cash); foreach( string _symbol in symbols) { AddSecurity(SecurityType.Forex, _symbol, Resolution.Second); _bb = BB(_symbol, 20, 1m, MovingAverageType.Exponential, Resolution.Minute); bbDic.Add(_symbol, _bb); _macd = MACD(_symbol, 13 , 26, 9 , MovingAverageType.Exponential, Resolution.Minute); macdDic.Add(_symbol,_macd); _rsi = RSI(_symbol, 14, MovingAverageType.Exponential, Resolution.Hour); rsiDic.Add(_symbol, _rsi); shrtDic.Add(_symbol, false); lngDic.Add(_symbol, false); entryPriceDic.Add(_symbol, 0); winDic.Add(_symbol, 0); lossDic.Add(_symbol, 0); } } public void OnData(TradeBars data) { foreach(string _symbol in symbols) { EnterTrade(data, _symbol); shrt = shrtDic[_symbol]; lng = lngDic[_symbol]; _entryPrice = entryPriceDic[_symbol]; if ((shrt || lng) && (data[_symbol].Time - lastTimeDic[_symbol]).TotalSeconds >= 900) { if ( (_entryPrice > data[_symbol].Price && shrt) || (_entryPrice < data[_symbol].Price && lng)) { _cash += (_stake+_stake * .8m); winDic[_symbol] += 1; Log(_symbol + " I win: " + "Long = true, Short = false: "+ lng+ " Positive means Short win, Negative Means Long win: "+ (_entryPrice - data[_symbol].Price)+ " Total Cash (Running Tally): "+ _cash); } else { lossDic[_symbol] +=1 ; Log(_symbol + " I lose: " + "Long = true, Short = false: "+ lng+ " Positive means short win , Negative means long win: "+ (_entryPrice - data[_symbol].Price)+ " Total Cash (Running Tally): "+ _cash); } Portfolio.SetCash(_cash); shrtDic[_symbol] = false; lngDic[_symbol] = false; } } } public void EnterTrade(TradeBars data, string _symbol) { //Rules for entry. if (!_bb.IsReady) return; //if(!_macd.IsReady) return; //if(!_aroon.IsReady) return; //if(!_rsi.IsReady) return; _price = data[_symbol].Close; decimal signalDeltaPercent = (macdDic[_symbol] - macdDic[_symbol].Signal)/(macdDic[_symbol].Fast); var tolerance = 0.0025m; //var percentUp = _bb.UpperBand/20000m; //var percentDown = _bb.LowerBand/20000m; if ( _price >= (_bb.UpperBand ) && !(lng || shrt) && signalDeltaPercent < tolerance && _rsi >= 70 ) { lastTimeDic[_symbol] = data[_symbol].Time; entryPriceDic[_symbol] = Securities[_symbol].Price; _cash -= _stake; shrtDic[_symbol] = true; } else if ( _price <= (_bb.LowerBand ) && !(lng || shrt) && signalDeltaPercent > tolerance && _rsi <= 30) { lastTimeDic[_symbol] = data[_symbol].Time; entryPriceDic[_symbol] = Securities[_symbol].Price; lngDic[_symbol] = true; } } public override void OnEndOfDay() { foreach( string _symbol in symbols) { wins = winDic[_symbol]; losses = lossDic[_symbol]; try{ Debug(_symbol+" Number of Wins: " + wins +" Number of Losses: "+ losses + " Percent Win: "+ Math.Round(100*(wins/ (losses + wins)), 2) + " Time/Date: "+ lastTimeDic[_symbol]); Debug( "Total Cash: "+ _cash); winDic[_symbol] = 0; lossDic[_symbol] = 0; } catch (Exception err){ Error(err.Message); } } } } }