Overall Statistics |
Total Trades 20 Average Win 0% Average Loss 0% Compounding Annual Return 349.100% Drawdown 40.300% Expectancy 0 Net Profit 40.306% Sharpe Ratio 4.663 Probabilistic Sharpe Ratio 67.378% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 3.365 Beta 3.65 Annual Standard Deviation 0.879 Annual Variance 0.773 Information Ratio 4.865 Tracking Error 0.801 Treynor Ratio 1.123 Total Fees $26.29 Estimated Strategy Capacity $19000000.00 |
""" SEL(stock selection part) Qual Up Based on the 'Quality Companies in an Uptrand' strategy introduced by Chris Cain, 22 Nov 2019 adapted and recoded by Jonathon Tzu and Peter Guenther https://www.quantconnect.com/forum/discussion/9678/quality-companies-in-an-uptrend/p1 https://www.quantconnect.com/forum/discussion/9632/amazing-returns-superior-stock-selection-strategy-superior-in-amp-out-strategy/p2 I/O(in & out part) Option 1: The In & Out algo Based on the 'In & Out' strategy introduced by Peter Guenther, 4 Oct 2020 expanded/inspired by Tentor Testivis, Dan Whitnable (Quantopian), Vladimir, Thomas Chang, Mateusz Pulka, Derek Melchin (QuantConnect), Nathan Swenson, Goldie Yalamanchi, and Sudip Sil https://www.quantopian.com/posts/new-strategy-in-and-out https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/p1 Option 2: The Distilled Bear in & out algo based on Dan Whitnable's 22 Oct 2020 algo on Quantopian. Dan's original notes: "This is based on Peter Guenther great “In & Out” algo. Included Tentor Testivis recommendation to use volatility adaptive calculation of WAIT_DAYS and RET. Included Vladimir's ideas to eliminate fixed constants Help from Thomas Chang" https://www.quantopian.com/posts/new-strategy-in-and-out https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/ """ from QuantConnect.Data.UniverseSelection import * import math import numpy as np import pandas as pd import scipy as sp class QualUp_inout(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 1, 1) #Set Start Date #self.SetEndDate(2010, 12, 31) #Set End Date self.cap = 100000 self.SetCash(self.cap) res = Resolution.Hour # Holdings ### 'Out' holdings and weights self.BND1 = self.AddEquity('TLT', res).Symbol #TLT; TMF for 3xlev self.quantity = {self.BND1: 0} # Choose in & out algo self.go_inout_vs_dbear = 0 # 1=In&Out, 0=DistilledBear ##### In & Out parameters ##### # Feed-in constants self.INI_WAIT_DAYS = 15 # out for 3 trading weeks self.wait_days = self.INI_WAIT_DAYS # Market and list of signals based on ETFs self.MRKT = self.AddEquity('SPY', res).Symbol # market self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials) self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals) self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res) self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield) self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD) self.GOLD = self.AddEquity('GLD', res).Symbol # gold self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver #self.INFL = self.AddEquity('RINF', res).Symbol # disambiguate GPLD/SLVA pair via inflaction expectations self.TIPS = self.AddEquity('TIP', res).Symbol # disambiguate GPLD/SLVA pair via inflaction expectations; Treasury Yield = TIPS Yield + Expected Inflation self.UTIL = self.AddEquity('XLU', res).Symbol # utilities self.INDU = self.PRDC # vs industrials self.SHCU = self.AddEquity('FXF', res).Symbol # safe haven currency (CHF) self.RICU = self.AddEquity('FXA', res).Symbol # vs risk currency (AUD) self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.SHCU, self.RICU, self.TIPS] #self.INFL self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.DEBT, self.USDX] self.pairlist = ['G_S', 'U_I', 'C_A'] # Initialize variables ## 'In'/'out' indicator self.be_in = 1 #-1 #initially, set to an arbitrary value different from 1 (in) and 0 (out) self.be_in_prior = 0 #-1 #initially, set to an arbitrary value different from 1 (in) and 0 (out) ## Day count variables self.dcount = 0 # count of total days since start self.outday = (-self.INI_WAIT_DAYS+1) # setting ensures universe updating at algo start ## Flexi wait days self.WDadjvar = self.INI_WAIT_DAYS self.adjwaitdays = self.INI_WAIT_DAYS ## For inflation gauge self.debt1st = [] self.tips1st = [] ##### Distilled Bear parameters (note: some signals shared with In & Out) ##### self.DISTILLED_BEAR = 1 #-1 self.VOLA_LOOKBACK = 126 self.WAITD_CONSTANT = 85 # set a warm-up period to initialize the indicator self.SetWarmUp(timedelta(350)) ##### Qual Up parameters ##### self.UniverseSettings.Resolution = res self.AddUniverse(self.UniverseCoarseFilter, self.UniverseFundamentalsFilter) self.num_coarse = 500 self.num_screener = 250 self.num_stocks = 20 self.formation_days = 126 self.lowmom = False self.data = {} self.setrebalancefreq = 60 # X days, update universe and momentum calculation self.updatefinefilter = 0 self.symbols = None self.reb_count = 0 self.Schedule.On( self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 30), self.rebalance_when_out_of_the_market) self.Schedule.On( self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose('SPY', 0), self.record_vars) # Benchmarks self.QQQ = self.AddEquity('QQQ', res).Symbol self.benchmarks = [] self.year = self.Time.year #for resetting benchmarks annually if applicable # Setup daily consolidation symbols = [self.MRKT] + self.SIGNALS + self.FORPAIRS + [self.QQQ] for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) # Warm up history if self.go_inout_vs_dbear==1: self.lookback = 252 if self.go_inout_vs_dbear==0: self.lookback = 126 self.history = self.History(symbols, self.lookback, Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() def UniverseCoarseFilter(self, coarse): if not (((self.dcount-self.reb_count)==self.setrebalancefreq) or (self.dcount == self.outday + self.adjwaitdays - 1)): self.updatefinefilter = 0 return Universe.Unchanged self.updatefinefilter = 1 # drop stocks which have no fundamental data or have too low prices selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)] # rank the stocks by dollar volume filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True) return [x.Symbol for x in filtered[:self.num_coarse]] def UniverseFundamentalsFilter(self, fundamental): if self.updatefinefilter == 0: return Universe.Unchanged rank_cash_return = sorted(fundamental, key=lambda x: x.ValuationRatios.CashReturn, reverse=True) rank_fcf_yield = sorted(fundamental, key=lambda x: x.ValuationRatios.FCFYield, reverse=True) rank_roic = sorted(fundamental, key=lambda x: x.OperationRatios.ROIC.Value, reverse=True) rank_ltd_to_eq = sorted(fundamental, key=lambda x: x.OperationRatios.LongTermDebtEquityRatio.Value, reverse=True) combo_rank = {} for i,ele in enumerate(rank_cash_return): rank1 = i rank2 = rank_fcf_yield.index(ele) score = sum([rank1*0.5,rank2*0.5]) combo_rank[ele] = score rank_value = dict(sorted(combo_rank.items(), key=lambda item:item[1], reverse=False)) stock_dict = {} # assign a score to each stock, you can also change the rule of scoring here. for i,ele in enumerate(rank_roic): rank1 = i rank2 = rank_ltd_to_eq.index(ele) rank3 = list(rank_value.keys()).index(ele) score = sum([rank1*0.33,rank2*0.33,rank3*0.33]) stock_dict[ele] = score # sort the stocks by their scores self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=True) self.sorted_symbol = [self.sorted_stock[i][0] for i in range(len(self.sorted_stock))] top= self.sorted_symbol[:self.num_screener] self.symbols = [x.Symbol for x in top] #self.Log("100 fine-filtered stocks\n" + str(sorted([str(i.Value) for i in self.symbols]))) self.updatefinefilter = 0 self.reb_count = self.dcount return self.symbols def OnSecuritiesChanged(self, changes): addedSymbols = [] for security in changes.AddedSecurities: addedSymbols.append(security.Symbol) if security.Symbol not in self.data: self.data[security.Symbol] = SymbolData(security.Symbol, self.formation_days, self) if len(addedSymbols) > 0: history = self.History(addedSymbols, 1 + self.formation_days, Resolution.Daily).loc[addedSymbols] for symbol in addedSymbols: try: self.data[symbol].Warmup(history.loc[symbol]) except: self.Debug(str(symbol)) continue def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-self.lookback:] if self.go_inout_vs_dbear==1: self.update_history_shift() def update_history_shift(self): self.history_shift = self.history.rolling(11, center=True).mean().shift(60) def derive_vola_waitdays(self): volatility = 0.6 * np.log1p(self.history[[self.MRKT]].pct_change()).std() * np.sqrt(252) wait_days = int(volatility * self.WAITD_CONSTANT) returns_lookback = int((1.0 - volatility) * self.WAITD_CONSTANT) return wait_days, returns_lookback def signalcheck_inout(self): ##### In & Out signal check logic ##### # Returns sample to detect extreme observations returns_sample = (self.history / self.history_shift - 1) # Reverse code USDX: sort largest changes to bottom returns_sample[self.USDX] = returns_sample[self.USDX] * (-1) # For pairs, take returns differential, reverse coded returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA]) returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU]) returns_sample['C_A'] = -(returns_sample[self.SHCU] - returns_sample[self.RICU]) # Extreme observations; statist. significance = 1% pctl_b = np.nanpercentile(returns_sample, 1, axis=0) extreme_b = returns_sample.iloc[-1] < pctl_b # Re-assess/disambiguate double-edged signals if self.dcount==0: self.debt1st = self.history[self.DEBT] self.tips1st = self.history[self.TIPS] self.history['INFL'] = (self.history[self.DEBT]/self.debt1st - self.history[self.TIPS]/self.tips1st) median = np.nanmedian(self.history, axis=0) abovemedian = self.history.iloc[-1] > median ### Interest rate expectations (cost of debt) may increase because the economic outlook improves (showing in rising input prices) = actually not a negative signal extreme_b.loc[[self.DEBT]] = np.where((extreme_b.loc[[self.DEBT]].any()) & (abovemedian[[self.METL, self.NRES]].any()), False, extreme_b.loc[[self.DEBT]]) ### GOLD/SLVA differential may increase due to inflation expectations which actually suggest an economic improvement = actually not a negative signal extreme_b.loc['G_S'] = np.where((extreme_b.loc[['G_S']].any()) & (abovemedian.loc[['INFL']].any()), False, extreme_b.loc['G_S']) # Determine waitdays empirically via safe haven excess returns, 50% decay self.WDadjvar = int( max(0.50 * self.WDadjvar, self.INI_WAIT_DAYS * max(1, np.where((returns_sample[self.GOLD].iloc[-1]>0) & (returns_sample[self.SLVA].iloc[-1]<0) & (returns_sample[self.SLVA].iloc[-2]>0), self.INI_WAIT_DAYS, 1), np.where((returns_sample[self.UTIL].iloc[-1]>0) & (returns_sample[self.INDU].iloc[-1]<0) & (returns_sample[self.INDU].iloc[-2]>0), self.INI_WAIT_DAYS, 1), np.where((returns_sample[self.SHCU].iloc[-1]>0) & (returns_sample[self.RICU].iloc[-1]<0) & (returns_sample[self.RICU].iloc[-2]>0), self.INI_WAIT_DAYS, 1) )) ) self.adjwaitdays = min(60, self.WDadjvar) return (extreme_b[self.SIGNALS + self.pairlist]).any() def signalcheck_dbear(self): ##### Distilled Bear signal check logic ##### self.adjwaitdays, returns_lookback = self.derive_vola_waitdays() ## Check for Bears returns = self.history.pct_change(returns_lookback).iloc[-1] silver_returns = returns[self.SLVA] gold_returns = returns[self.GOLD] industrials_returns = returns[self.INDU] utilities_returns = returns[self.UTIL] metals_returns = returns[self.METL] dollar_returns = returns[self.USDX] DISTILLED_BEAR = (((gold_returns > silver_returns) and (utilities_returns > industrials_returns)) and (metals_returns < dollar_returns) ) return DISTILLED_BEAR def rebalance_when_out_of_the_market(self): if self.go_inout_vs_dbear==1: out_signal = self.signalcheck_inout() if self.go_inout_vs_dbear==0: out_signal = self.signalcheck_dbear() ##### Determine whether 'in' or 'out' of the market. Perform out trading if applicable ##### if out_signal: self.be_in = False self.outday = self.dcount if self.quantity[self.BND1] == 0: for symbol in self.quantity.copy().keys(): if symbol == self.BND1: continue self.Order(symbol, - self.quantity[symbol]) self.Debug([str(self.Time), str(symbol), str(-self.quantity[symbol])]) del self.quantity[symbol] quantity = self.Portfolio.TotalPortfolioValue / self.Securities[self.BND1].Close self.quantity[self.BND1] = math.floor(quantity) self.Order(self.BND1, self.quantity[self.BND1]) self.Debug([str(self.Time), str(self.BND1), str(self.quantity[self.BND1])]) if (self.dcount >= self.outday + self.adjwaitdays): self.be_in = True # Update stock ranking/holdings, when swithing from 'out' to 'in' plus every X days when 'in' (set rebalance frequency) if (self.be_in and not self.be_in_prior) or (self.be_in and (self.dcount==self.reb_count)): self.rebalance() self.be_in_prior = self.be_in self.dcount += 1 def rebalance(self): if self.symbols is None: return chosen_df = self.calc_return(self.symbols) chosen_df = chosen_df.iloc[:self.num_stocks] if self.quantity[self.BND1] > 0: self.Order(self.BND1, - self.quantity[self.BND1]) self.Debug([str(self.Time), str(self.BND1), str(-self.quantity[self.BND1])]) self.quantity[self.BND1] = 0 weight = 1 / self.num_stocks for symbol in self.quantity.copy().keys(): if symbol == self.BND1: continue if not self.CurrentSlice.ContainsKey(symbol) or self.CurrentSlice[symbol] is None: continue if symbol not in chosen_df.index: self.Order(symbol, - self.quantity[symbol]) self.Debug([str(self.Time), str(symbol), str(-self.quantity[symbol])]) del self.quantity[symbol] else: quantity = self.Portfolio.TotalPortfolioValue * weight / self.Securities[symbol].Close if math.floor(quantity) != self.quantity[symbol]: self.Order(symbol, math.floor(quantity) - self.quantity[symbol]) self.Debug([str(self.Time), str(symbol), str(math.floor(quantity) -self.quantity[symbol])]) self.quantity[symbol] = math.floor(quantity) for symbol in chosen_df.index: if not self.CurrentSlice.ContainsKey(symbol) or self.CurrentSlice[symbol] is None: continue if symbol not in self.quantity.keys(): quantity = self.Portfolio.TotalPortfolioValue * weight / self.Securities[symbol].Close self.quantity[symbol] = math.floor(quantity) self.Order(symbol, self.quantity[symbol]) self.Debug([str(self.Time), str(symbol), str(self.quantity[symbol])]) def calc_return(self, stocks): ret = {} for symbol in stocks: try: ret[symbol] = self.data[symbol].Roc.Current.Value except: self.Debug(str(symbol)) continue df_ret = pd.DataFrame.from_dict(ret, orient='index') df_ret.columns = ['return'] sort_return = df_ret.sort_values(by = ['return'], ascending = self.lowmom) return sort_return def record_vars(self): if self.dcount==1: self.benchmarks = [self.history[self.MRKT].iloc[-2], self.Portfolio.TotalPortfolioValue, self.history[self.QQQ].iloc[-2]] # reset portfolio value and qqq benchmark annually if self.Time.year!=self.year: self.benchmarks = [self.benchmarks[0], self.Portfolio.TotalPortfolioValue, self.history[self.QQQ].iloc[-2]] self.year = self.Time.year # SPY benchmark for main chart spy_perf = self.history[self.MRKT].iloc[-1] / self.benchmarks[0] * self.cap self.Plot('Strategy Equity', 'SPY', spy_perf) # Leverage gauge: cash level self.Plot('Cash level', 'cash', round(self.Portfolio.Cash+self.Portfolio.UnsettledCash, 0)) # Annual saw tooth return comparison: Portfolio VS QQQ saw_portfolio_return = self.Portfolio.TotalPortfolioValue / self.benchmarks[1] - 1 saw_qqq_return = self.history[self.QQQ].iloc[-1] / self.benchmarks[2] - 1 self.Plot('Annual Saw Tooth Returns: Portfolio VS QQQ', 'Annual portfolio return', round(saw_portfolio_return, 4)) self.Plot('Annual Saw Tooth Returns: Portfolio VS QQQ', 'Annual QQQ return', round(float(saw_qqq_return), 4)) ### IN/Out indicator and wait days self.Plot("In Out", "in_market", int(self.be_in)) self.Plot("Wait Days", "waitdays", self.adjwaitdays) class SymbolData(object): def __init__(self, symbol, roc, algorithm): self.Symbol = symbol self.Roc = RateOfChange(roc) self.algorithm = algorithm self.consolidator = algorithm.ResolveConsolidator(symbol, Resolution.Daily) algorithm.RegisterIndicator(symbol, self.Roc, self.consolidator) def Warmup(self, history): for index, row in history.iterrows(): self.Roc.Update(index, row['close'])