Overall Statistics |
Total Orders 56648 Average Win 0.09% Average Loss -0.10% Compounding Annual Return 70.647% Drawdown 21.700% Expectancy 0.034 Start Equity 1000000.00 End Equity 2578808.66 Net Profit 157.881% Sharpe Ratio 1.931 Sortino Ratio 2.282 Probabilistic Sharpe Ratio 89.374% Loss Rate 46% Win Rate 54% Profit-Loss Ratio 0.90 Alpha 0.428 Beta -0.066 Annual Standard Deviation 0.221 Annual Variance 0.049 Information Ratio 1.631 Tracking Error 0.254 Treynor Ratio -6.458 Total Fees $0.00 Estimated Strategy Capacity $290000.00 Lowest Capacity Asset BTCUSDT 18N Portfolio Turnover 8565.60% |
#region imports using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.Drawing; using System.Globalization; using System.Linq; using System.Text; using Newtonsoft.Json; using QuantConnect; using QuantConnect.Algorithm; using QuantConnect.Algorithm.Framework; using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Execution; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Portfolio.SignalExports; using QuantConnect.Algorithm.Framework.Risk; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Algorithm.Selection; using QuantConnect.Api; using QuantConnect.Benchmarks; using QuantConnect.Brokerages; using QuantConnect.Commands; using QuantConnect.Configuration; using QuantConnect.Data; using QuantConnect.Data.Auxiliary; using QuantConnect.Data.Consolidators; using QuantConnect.Data.Custom; using QuantConnect.Data.Custom.IconicTypes; using QuantConnect.Data.Fundamental; using QuantConnect.Data.Market; using QuantConnect.Data.Shortable; using QuantConnect.Data.UniverseSelection; using QuantConnect.DataSource; using QuantConnect.Indicators; using QuantConnect.Interfaces; using QuantConnect.Notifications; using QuantConnect.Orders; using QuantConnect.Orders.Fees; using QuantConnect.Orders.Fills; using QuantConnect.Orders.OptionExercise; using QuantConnect.Orders.Slippage; using QuantConnect.Orders.TimeInForces; using QuantConnect.Parameters; using QuantConnect.Python; using QuantConnect.Scheduling; using QuantConnect.Securities; using QuantConnect.Securities.Crypto; using QuantConnect.Securities.CryptoFuture; using QuantConnect.Securities.Equity; using QuantConnect.Securities.Forex; using QuantConnect.Securities.Future; using QuantConnect.Securities.IndexOption; using QuantConnect.Securities.Interfaces; using QuantConnect.Securities.Option; using QuantConnect.Securities.Positions; using QuantConnect.Securities.Volatility; using QuantConnect.Statistics; using QuantConnect.Storage; using QuantConnect.Util; using Calendar = QuantConnect.Data.Consolidators.Calendar; using QCAlgorithmFramework = QuantConnect.Algorithm.QCAlgorithm; using QCAlgorithmFrameworkBridge = QuantConnect.Algorithm.QCAlgorithm; #endregion namespace QuantConnect.Algorithm.CSharp { public class CryptoExampleStrategyPublic : QCAlgorithm { public static string ModelParamsFileName = "baseline_model_params.json"; public static string ThresholdArrayFileName = "baseline_threshold_array.json"; public class ModelParams { [JsonProperty("feature_cols")] public string[] FeatureCols { get; set; } [JsonProperty("coefficients")] public decimal[] Coefficients { get; set; } [JsonProperty("intercept")] public decimal Intercept { get; set; } [JsonProperty("center")] public decimal[] Center { get; set; } [JsonProperty("scale")] public decimal[] Scale { get; set; } } // Ring buffer for prediction history private class RingBuffer<T> { private T[] _buffer; private DateTime[] _timestamps; private int _size; private int _currentIndex; private int _count; public RingBuffer(int size) { _size = size; _buffer = new T[size]; _timestamps = new DateTime[size]; _currentIndex = 0; _count = 0; } public void Add(DateTime timestamp, T item) { _timestamps[_currentIndex] = timestamp; _buffer[_currentIndex] = item; _currentIndex = (_currentIndex + 1) % _size; if (_count < _size) _count++; } public int Count => _count; public T GetByIndex(int index) { if (index < 0 || index >= _count) throw new IndexOutOfRangeException(); int actualIndex = (_currentIndex - _count + index + _size) % _size; return _buffer[actualIndex]; } public DateTime GetTimestampByIndex(int index) { if (index < 0 || index >= _count) throw new IndexOutOfRangeException(); int actualIndex = (_currentIndex - _count + index + _size) % _size; return _timestamps[actualIndex]; } public T GetLatest() { if (_count == 0) throw new InvalidOperationException("Buffer is empty"); int index = (_currentIndex - 1 + _size) % _size; return _buffer[index]; } public DateTime GetLatestTimestamp() { if (_count == 0) throw new InvalidOperationException("Buffer is empty"); int index = (_currentIndex - 1 + _size) % _size; return _timestamps[index]; } public List<T> GetItems() { List<T> result = new List<T>(_count); for (int i = 0; i < _count; i++) { int index = (_currentIndex - _count + i + _size) % _size; result.Add(_buffer[index]); } return result; } public List<KeyValuePair<DateTime, T>> GetAllWithTimestamps() { List<KeyValuePair<DateTime, T>> result = new List<KeyValuePair<DateTime, T>>( _count ); for (int i = 0; i < _count; i++) { int index = (_currentIndex - _count + i + _size) % _size; result.Add(new KeyValuePair<DateTime, T>(_timestamps[index], _buffer[index])); } return result; } } private enum ModelState { Normal, Suspicious, Reversed, HighlyUnreliable, } private Symbol _btcusdt; private ModelParams _modelParams; private decimal[] _thresholdArr; private bool _modelLoaded = false; private decimal _positionSize = 0.98m; private decimal _leverage = 1.0m; private decimal _enterPositionThreshold = 0.04m; private decimal _exitPositionThreshold = 0.60m; private decimal _takeProfitTarget = 0.01m; private decimal _stopLossLevel = 1m; private decimal _modelReverseThreshold = 1m; private ModelState _currentModelState = ModelState.Normal; private int _consecutiveLosses = 0; private int _consecutiveWins = 0; private int _consecutiveLossesThreshold = 2; private int _consecutiveWinsThreshold = 2; private DateTime _stateTransitionTime; private decimal _stateTransitionPrice; private DateTime _positionEntryTime; private bool _inLongPosition = false; private bool _inShortPosition = false; private decimal _entryPrice = 0m; private int _positionHoldingWindow = 10; private int _earlyProfitMinHoldingTime = 1; private RingBuffer<decimal> _predictionHistory; private int _maxPredictionHistory = 60; private HashSet<DateTime> _testDays = new HashSet<DateTime>(); private List<TradeRecord> _tradeRecords = new List<TradeRecord>(); private class TradeRecord { public DateTime EntryTime { get; set; } public DateTime ExitTime { get; set; } public decimal EntryPrice { get; set; } public decimal ExitPrice { get; set; } public string Direction { get; set; } public decimal PnL { get; set; } public string ExitReason { get; set; } public ModelState ModelStateAtEntry { get; set; } public decimal OriginalPrediction { get; set; } public decimal AdjustedPrediction { get; set; } } public override void Initialize() { if (!LiveMode) { SetStartDate(2023, 7, 1); // SetEndDate(2023, 10, 1); SetEndDate(DateTime.Now); } // SetAccountCurrency("USDT", 1_000_000); SetAccountCurrency("USD", 1_000_000); // SetCash("USDT", 0); SetBrokerageModel(new DefaultBrokerageModel()); SetTimeZone(TimeZones.Utc); // We use 2x leverage for quantconnect live paper trading for the high sharpe ratio if (LiveMode) { _positionSize = 0.98m; _leverage = 2.0m; } var security = AddCrypto( "BTCUSDT", Resolution.Minute, LiveMode ? null: Market.Binance, fillForward: true, leverage: _leverage ); // security.SetFeeModel(new ConstantFeeModel(0.0m)); _btcusdt = security.Symbol; _predictionHistory = new RingBuffer<decimal>(_maxPredictionHistory); // Reload model every 00:00 UTC // Schedule.On( // DateRules.EveryDay("BTCUSDT"), // TimeRules.At(new TimeSpan(00, 00, 00)), // LoadModelParameters // ); // Initialize test days // InitializeTestDays(); // Reset state machine at start of each day // Schedule.On( // DateRules.EveryDay("BTCUSDT"), // TimeRules.At(00, 00, 01), // Just after midnight // ResetStateMachine // ); // Liquidate at the start of each day // Schedule.On( // DateRules.EveryDay("BTCUSDT"), // TimeRules.At(00, 00, 05), // Just after midnight // CheckAndLiquidateForNonTestDays // ); ResetStateMachine(); LoadModelParameters(); LoadThresholdArray(); } private void ResetStateMachine() { if (_currentModelState != ModelState.Normal) { Log( $"Resetting state machine. Previous state: {_currentModelState}, Consecutive losses: {_consecutiveLosses}, Consecutive wins: {_consecutiveWins}" ); } _currentModelState = ModelState.Normal; _consecutiveLosses = 0; _consecutiveWins = 0; Log( $"State machine reset for {Time.Date:yyyy-MM-dd}. Now in {_currentModelState} state." ); } private void InitializeTestDays() { string[] testDaysStrings = new string[] {}; foreach (string dateStr in testDaysStrings) { DateTime date = DateTime.Parse(dateStr); _testDays.Add(date.Date); // Store just the date part, no time } Log($"Initialized {_testDays.Count} test days for trading"); } public override void OnData(Slice slice) { Log($"[OnData] - {Time} - Before Check {_btcusdt}, _modelLoaded {_modelLoaded}"); if (!slice.Bars.ContainsKey(_btcusdt) || !_modelLoaded) return; Log($"[OnData] - {Time} - After Check: {slice.Bars[_btcusdt]}"); var bar = slice.Bars[_btcusdt]; decimal[] features = CalculateFeatures(bar); decimal originalPredictProb = PredictProbability(features); decimal adjustedPredictProb = AdjustPredictionByState(originalPredictProb); decimal percentile = GetProbabilityPercentile(adjustedPredictProb); _predictionHistory.Add(Time, originalPredictProb); Log( $"Time: {Time}, Price: {bar.Close}, Original Prediction: {originalPredictProb:F4}, " + $"Adjusted Prediction: {adjustedPredictProb:F4}, Percentile: {percentile:P2}, State: {_currentModelState}" ); bool shouldBeLong = percentile >= (1m - _enterPositionThreshold / 2m); bool shouldBeShort = percentile <= (_enterPositionThreshold / 2m); bool shouldExitLong = percentile <= (_exitPositionThreshold / 2m); bool shouldExitShort = percentile >= (1m - _exitPositionThreshold / 2m); bool holdingTimeElapsed = false; bool earlyProfitTimeElapsed = false; decimal currentPnlPercent = 0m; if (_inLongPosition || _inShortPosition) { TimeSpan holdingTime = Time - _positionEntryTime; holdingTimeElapsed = holdingTime.TotalMinutes >= _positionHoldingWindow; earlyProfitTimeElapsed = holdingTime.TotalMinutes >= _earlyProfitMinHoldingTime; if (_inLongPosition) { currentPnlPercent = (bar.Close - _entryPrice) / _entryPrice * 100m; } else if (_inShortPosition) { currentPnlPercent = (_entryPrice - bar.Close) / _entryPrice * 100m; } if (holdingTimeElapsed) { Log($"Position holding window of {_positionHoldingWindow} minutes elapsed"); } } bool takeProfitTriggered = earlyProfitTimeElapsed && currentPnlPercent >= _takeProfitTarget; bool stopLossTriggered = currentPnlPercent <= -_stopLossLevel; if (_inLongPosition) { // Exit if: // 1. opposite signal // 2. holding time elapsed // 3. exit threshold reached // 4. take profit target hit // 5. stop loss triggered if ( shouldBeShort || holdingTimeElapsed || shouldExitLong || takeProfitTriggered || stopLossTriggered ) { string reason = shouldBeShort ? "Opposite signal" : holdingTimeElapsed ? "Holding time elapsed" : takeProfitTriggered ? $"Take profit target hit: {currentPnlPercent:F2}%" : stopLossTriggered ? $"Stop loss triggered: {currentPnlPercent:F2}%" : "Exit threshold reached"; ClosePosition( "LONG", bar.Close, reason, originalPredictProb, adjustedPredictProb ); // Check if stop loss should trigger state machine transition if (stopLossTriggered) { UpdateStateMachineOnLoss(); } else if (takeProfitTriggered) { UpdateStateMachineOnWin(); } } } else if (_inShortPosition) { // Exit if: // 1. opposite signal // 2. holding time elapsed // 3. exit threshold reached // 4. take profit target hit // 5. stop loss triggered if ( shouldBeLong || holdingTimeElapsed || shouldExitShort || takeProfitTriggered || stopLossTriggered ) { string reason = shouldBeLong ? "Opposite signal" : holdingTimeElapsed ? "Holding time elapsed" : takeProfitTriggered ? $"Take profit target hit: {currentPnlPercent:F2}%" : stopLossTriggered ? $"Stop loss triggered: {currentPnlPercent:F2}%" : "Exit threshold reached"; ClosePosition( "SHORT", bar.Close, reason, originalPredictProb, adjustedPredictProb ); // Check if stop loss should trigger state machine transition if (stopLossTriggered) { UpdateStateMachineOnLoss(); } else if (takeProfitTriggered) { UpdateStateMachineOnWin(); } } } // Enter new positions if we're not already in a position if (!_inLongPosition && !_inShortPosition) { if (shouldBeLong) { EnterLong(bar.Close, originalPredictProb, adjustedPredictProb); } else if (shouldBeShort) { EnterShort(bar.Close, originalPredictProb, adjustedPredictProb); } } } private decimal AdjustPredictionByState(decimal originalPrediction) { switch (_currentModelState) { case ModelState.Normal: // No adjustment needed return originalPrediction; case ModelState.Suspicious: // Reduce confidence by moving prediction toward 0.5 return 0.5m + (originalPrediction - 0.5m) * 0.5m; case ModelState.Reversed: // Invert the prediction (1-p) return 1m - originalPrediction; case ModelState.HighlyUnreliable: // Just return 0.5 (no clear signal) return 0.5m; default: return originalPrediction; } } private void UpdateStateMachineOnLoss() { _consecutiveLosses++; _consecutiveWins = 0; // Transition state machine based on consecutive losses switch (_currentModelState) { case ModelState.Normal: if (_consecutiveLosses >= _consecutiveLossesThreshold) { _currentModelState = ModelState.Suspicious; _stateTransitionTime = Time; Log( $"State transition: Normal -> Suspicious after {_consecutiveLosses} consecutive losses" ); } break; case ModelState.Suspicious: if (_consecutiveLosses >= _consecutiveLossesThreshold * 2) { _currentModelState = ModelState.Reversed; _stateTransitionTime = Time; Log( $"State transition: Suspicious -> Reversed after {_consecutiveLosses} consecutive losses" ); } break; case ModelState.Reversed: if (_consecutiveLosses >= _consecutiveLossesThreshold * 3) { _currentModelState = ModelState.HighlyUnreliable; _stateTransitionTime = Time; Log( $"State transition: Reversed -> HighlyUnreliable after {_consecutiveLosses} consecutive losses" ); } break; } } private void UpdateStateMachineOnWin() { _consecutiveWins++; _consecutiveLosses = 0; // Transition state machine based on consecutive wins switch (_currentModelState) { case ModelState.HighlyUnreliable: if (_consecutiveWins >= _consecutiveWinsThreshold) { _currentModelState = ModelState.Reversed; _stateTransitionTime = Time; Log( $"State transition: HighlyUnreliable -> Reversed after {_consecutiveWins} consecutive wins" ); } break; case ModelState.Reversed: if (_consecutiveWins >= _consecutiveWinsThreshold * 2) { _currentModelState = ModelState.Suspicious; _stateTransitionTime = Time; Log( $"State transition: Reversed -> Suspicious after {_consecutiveWins} consecutive wins" ); } break; case ModelState.Suspicious: if (_consecutiveWins >= _consecutiveWinsThreshold * 3) { _currentModelState = ModelState.Normal; _stateTransitionTime = Time; Log( $"State transition: Suspicious -> Normal after {_consecutiveWins} consecutive wins" ); } break; } } private void EnterLong( decimal price, decimal originalPrediction, decimal adjustedPrediction ) { SetHoldings(_btcusdt, _positionSize * _leverage); _inLongPosition = true; _inShortPosition = false; _positionEntryTime = Time; _entryPrice = price; Log( $"ENTERED LONG at {Time}, Price: {price}, Position Size: {_positionSize * _leverage}, Model State: {_currentModelState}" ); var trade = new TradeRecord { EntryTime = Time, EntryPrice = price, Direction = "LONG", ModelStateAtEntry = _currentModelState, OriginalPrediction = originalPrediction, AdjustedPrediction = adjustedPrediction, }; _tradeRecords.Add(trade); } private void EnterShort( decimal price, decimal originalPrediction, decimal adjustedPrediction ) { SetHoldings(_btcusdt, -_positionSize * _leverage); _inShortPosition = true; _inLongPosition = false; _positionEntryTime = Time; _entryPrice = price; Log( $"ENTERED SHORT at {Time}, Price: {price}, Position Size: {_positionSize * _leverage}, Model State: {_currentModelState}" ); var trade = new TradeRecord { EntryTime = Time, EntryPrice = price, Direction = "SHORT", ModelStateAtEntry = _currentModelState, OriginalPrediction = originalPrediction, AdjustedPrediction = adjustedPrediction, }; _tradeRecords.Add(trade); } private void ClosePosition( string positionType, decimal price, string reason, decimal originalPrediction, decimal adjustedPrediction ) { Liquidate(_btcusdt); decimal pnl = 0; if (positionType == "LONG") { pnl = (price - _entryPrice) / _entryPrice * 100; _inLongPosition = false; } else { pnl = (_entryPrice - price) / _entryPrice * 100; _inShortPosition = false; } Log( $"EXITED {positionType} at {Time}, Price: {price}, PnL: {pnl:F2}%, Reason: {reason}, Model State: {_currentModelState}" ); if (_tradeRecords.Count > 0) { var lastTrade = _tradeRecords[_tradeRecords.Count - 1]; lastTrade.ExitTime = Time; lastTrade.ExitPrice = price; lastTrade.PnL = pnl; lastTrade.ExitReason = reason; } } private decimal[] CalculateFeatures(TradeBar bar) { decimal[] features = new decimal[_modelParams.FeatureCols.Length]; int hour = Time.Hour; int minute = Time.Minute; decimal dayPct = (hour * 60 + minute) / (24m * 60m); for (int i = 0; i < _modelParams.FeatureCols.Length; i++) { switch (_modelParams.FeatureCols[i]) { case "close_open_ratio": features[i] = bar.Close / bar.Open; break; case "high_low_ratio": features[i] = bar.High / bar.Low; break; case "day_pct": features[i] = dayPct; break; default: Log($"Unknown feature: {_modelParams.FeatureCols[i]}"); features[i] = 0; break; } } return features; } /// <summary> /// This method is written just for fun! Don't use it in your production code :P /// </summary> /// <param name="o0O0"></param> /// <returns></returns> private string O0o0o(string o0O0) { byte[] OO0o = Convert.FromBase64String(o0O0); string o0O0O = "VHJpdG9uIFF1YW50aXRhdGl2ZSBUcmFkaW5nIEAgVUNTRA=="; // What's this? byte[] O0o0 = Encoding.UTF8.GetBytes(o0O0O); byte[] o00O = new byte[OO0o.Length]; for (int o = 0; o < OO0o.Length; o++) { byte O0 = OO0o[o]; byte o0 = O0o0[o % O0o0.Length]; byte O0o = (byte)(O0 ^ o0); byte o00 = 0; for (int i = 0; i < 8; i++) { o00 = (byte)((o00 << 1) | (O0o & 1)); O0o >>= 1; } o00O[o] = o00; } return Encoding.UTF8.GetString(o00O); } private void LoadModelParameters() { Log($"Model parameters file {ModelParamsFileName} not found."); // NOTE: base64 is used for encoding string easier in C# code, I can simply use the direct base64 transformation, but the additional manipulation is for fun :) string defaultModelJsonStr = O0o0o("8NYYxj6tW3lvXBQHQxtHXidK4P6WcaKkwB9cO6UhLA0nm3dYD3Pd+cxPBFoU36/zxP5cfj4LLxMPpNr9Q5tnJke6ZAb20YKkALEg+XmhBD1HlWdIe4cTMRAZJOII9wtr0KIg3kJVi+O7cIgf65UZ3hNyhOQWEcas6AXA2REzkKcTda9Cu4eviWQDzEoga49jJGrgntZlmyu7ZMT9K3XjPFOaXoZWEe7c6A3IGdEzzCfTAdPiu2/zeeQDiPjgdzHzxP583kKlU+vTCizff5WnXFNy0MbWZe7+6A2UGdFP7HXTddPwO2fzyyR3xBhgg29rDKLmfD5dq+O7cIgvawG3/tOSfobWZe6sqHngSxEz9MfTfYdC+2+nqeSXYrrgY5exJGLg/BZtk/k7bOy9K32fvBNyCE5WhT5swB8gmzmn1AeLCbfA+2fDieQDiPggF7+RJB6M3NYZ77n7GPTf633z/tOafobWZe7+KAXgyxFHzCfTAa/w+2enq6R/1JrggxHTpGLIPNYRk5v7ZMTf63W33tN60IbWLeCu"); try { Log($"defaultModelJsonStr: {defaultModelJsonStr}"); string jsonModelStr = Encoding.UTF8.GetString(Convert.FromBase64String(defaultModelJsonStr)); _modelParams = JsonConvert.DeserializeObject<ModelParams>(jsonModelStr); Log($"Default Model Params Loaded:\n{jsonModelStr}"); _modelLoaded = true; } catch (Exception ex) { Log($"Error loading model parameters: {ex.Message}"); Log($"Exception type: {ex.GetType().Name}"); if (ex.InnerException != null) { Log($"Inner exception: {ex.InnerException.Message}"); } _modelLoaded = false; } return; } private void LoadThresholdArray() { Log($"Threshold array file {ThresholdArrayFileName} not found."); string defaultThresholdArrayStr = O0o0o("vBbI3tZlu5u7ZOT96wm3btNyyDaWZcY+6A3I2RGvqIVTAYei+2fT+aR/qNgga+sRpGKsPJZlmyt7ZMSf6wnjnBMO+GTWbfasqHngWdFHxCfTnduAexPLeSR/7Biga6fxpGLg3BZl32v7EID/65UZPNMO2MSWbe4eqHngy5FPoOcTdZ/ie2fDySR3/EqgY5cRJGrA3NYZs+s7GMQdq32f/tOafmTWGao+KAXw2dEzzKcTCZdwO2/LOSSfoLpgF7cx5GKsfNZtmzm7ZOQvKwmfLhMGtKbWhUA+KHHoyxEz5DWTfa+i+2fbK+QL3Aogi9PTZB7AfJZls3k7bJBv63WX3tN6lKQWbc786JFuWRFH5HWTfYfi+2+neeQLmHjgY+sxJN6knlYRs/n7GNyd633TvBMGtDaWZd7+KHGUm9GvamcTfZ/C+xPbeSR3iLrga58x5B743FZlu9s7ZOwd63Wf/JNylMTWbe4sqHnIuxHzqIVTAb8i+2fDKyR31EogH4/TpGKsPJZlizl7ZMSfK3WvLpN6yIYWEeYsKAXweRFH9EdTdbfAO2fbOSR//FggY7cRJBasfJZls5s7GMz/65UZPBMO+HbWZd6sKAWES5FPxPXTfeMie2fDySR31BggF48j5GrQ/NYR3zn7ZMQv68Hb3lMO2CSWZe5+KHnQyxEz9DXTCdPwu2+XqeSXYlggF+sx5GKMPBYR33m7ZJB963Wv/BOSvIZWEeb+6HHYSxE77EeTdadwO2/TieQLiNhgY7+TJGqMbhYZo7n7ZIB9633jHNNy8GQWEeb86JFuWREz1EeTdbfwO2fDy+R/mLogY7cxZGrI3hZl/yu7bPT963XzrhNy8HaWbe4eqJGsu1E7zKcTfbeA+xPT6yQLmMqgY69jJBbAvFZlu9s7ZIC9q33T/NMO8DbWZfZs6HnoGRHzqIVTAb+iOxOX6yQL3Jjga5+R5BasPNYZo7v7hGo9KwnzHBMG4DbWZeY+KHGEmRFP5KdTdbfAO2eHSyQL/Hjga/tj5BbAfJZt/9n7ENz/65UZPBMGhOTWEfae6A3IyxFP1EeTdeOg+4dta6R3zMogH4+jJGLIXBYZuzk7ZNwvK53b3lMO2ETWZboe6HnoWZFH3OcTAafC+2fba2R3zPogY9sjJB6svNZt/2u7ZMyd6wm3PBMO+KbWhUA+qHHQC5FHoGcTdaci+xvra+QLiFhgY7+TJGqsLtZtu/k7ZNy9KwmnfJN60IaWhYLcaAXIedEzgEfTdZ9i+2/zy+R/zHggY5dxZGrI3hZl33k7ZNQdK32/fNMOlKQWEbqsqHHwm9GvameTdZ+Au2fDa+R3/LrgH6+xJBas/FZlu9s7ZKC9Kwm/3hNylEQWEfb+6HGEeRGvqIVTAb9COxPz+SR33MrgH9uRJGLYntZlizl7ZMSfK3XTfJN6hHbWZaosqHnQWdFHgEcTnduAexPLSyQLxBjgF7fTJGL43JZli/n7bPT/65UZPJN6lMSWbfZ+KHnI+RFH1CfTAb/CO4+viWQDxHigY5cj5B74/NYZqyu7ZKCdq3Wv/tOafmSWZbrc6HnwGZFPoIWTfaeA+2fjeWR3zPogY9uRJGLYnpZlu+v7ZNw9q3WnrlN60MYWZbrc6HHQS9FH5DUTfdNwu2fjS6SfoLpgF7eR5Grg7tYZozm7bOSvKwmnvNMGtKRWZe6cKHGUS9FP3OfTAbfCOxPjiaR3/Mqga7fz5IpmfJZtm/k7bKD9Kwm3LtMO8CQWZd786JFuWZFH1IUTAZ/iOxvDy+R/7Pjga/vxZGrI3hZl7+s7bMz96wHTnNMOtDbWZd4+6MWsu1E7zMfTCbfw+xPLy6R/iPjgH48xpGrovFZlu9s7ZJBvK32nfNMGyOSWbeY+6HHoWZGnqIVTAb/C+xuXq+R33PjgF4/TpGrgXNYZizl7ZMSfK3XjPNMGtCTWZf7c6A3AWREzoOcTnduAexPLyyR3iFgga/vTJBbQfJZlkzk7ZJD/65UZPJNy+IaWbe6eKHnwC9FPxKcTAYfwO4+viWQDxPgga7ex5GLYXNYRi3k7GJCdK3Wf/tOafmSWbcb+qHHYedEz1EcTCZdiO2/zOWR3zPogY+uxpGLInhYZqzm7ZPQv632nfJOSvIZWEeaeKHmUyxFP3MeTdZfwu2fD6yQLqJrggxExpGLg3BZl7zm7bIBvK33j3hMO4PZWZe6cKHGU2ZFHgDUTCbciu2fbeSQL7Lqga7fz5IpmfJZto5v7ZMSvK3Wf3pNylDYWbc5saHHA+xFPkCfTdaciOxunOeQL5Ngga68RJNaknlYRs9k7EMQ9KwGvHBMG0CTWGYp+6Hnom9GvameTfa+AOxvz+eQD5AogF58j5GKsXFZlu9s7ZJB963XjbtNywMTWZboeKHmk+ZFHzKXTlRliu2/beeR/mBggF/sx5BbAfBYR7yt7ZMSfK3XjfNNy4MQWbaos6AXAuxEz9OfTAa+g+4dta6R/1EogF6cj5Gqc/BYZs7k7GKAdK8Hb3lMO2MQWEc4eKAXAS9Ez9CeTfb/COxPTqeSXYliga6ej5GLY/BZtm7m7ZOSvK3WfnFN60MYWZbp+6AXwyxFP7OcTAbdi+2eHeeTLoLpgF7eRJB7Y/JZl79k7ZMS96wm3fJNy4GRWZe6cKHGUGdE7gEeTdeOiu2/DOSQD5Pggg9PTZB7A3BYRi5s7bMxvKwGHHJNy2GSWhYLcaAXI+RE79DXTfeOiO2enyyQDzNggY5/z5IpmfJZtoys7bOQdKwnT/JN6hOSWZe5saHHA+xFPkCfTCfNCO2fjq+QL/MrgF5fx5BbgvtaFFXm7bNxvq33TbtMO8PYWbf5+KAXI+VFPxMUTdeMiO2fTa6R35PigY4/TpGLg/NaN15t7EMydKwG/vNNy4MSWZeasqHnweZFHoOdTdbfAO2eXKyR3iErgH7+j5BacbtYZszl7ZMSfK3XjfBN6hKSWZeYs6HHQWRE7gGfTwduAexPLyyQD5EogH/sxJGLIbtYRo+u7ZNz/65UZPJNyyOQWZeasqHHwGZFPxDWTfafie2fDySR3mBgga6cx5GKsvBYR73n7ZMQvq5Xb3lMO2MQWEcae6HGEyxE79McTffNi+xvja2R3zPogY+txJB7onhYRi5s7ZPQ9KwGvPNOSvIZWEeaeKAXYCxEz5CeTfZciu2+X+SR/3ApgY7+TJGqcPBYRk1m7ZIC9K33zPJN6yGSWjYLcaAXI+RE73EfTCa9w+xPDieQD7AogF+uxZGrI3hZl7zk7GOTf632f3hMGtMTWbeZ+KA3Ym9GvameTfa+i+xvjKyR33Eqga/tx5GrALhaN15t7EMydKwHzvJN6hGTWGbqeKAXw+dFP9KXTlRliu2/bq6R3xPjgF+tj5BbYXNZtm+s70KjfawG/nBMOtHbWbfZsqHnwmREz5DUTdZcwe2fDySR3mBigY7ejpGrAfJZt79n7ENy9a3W3nhN6hCSWZfae6A2kC5FPkOfTAZ/iu2eHqeSXYliga6cRpGLg3NYRq1n7ZKAdq3WvHBOavIZWEeaeKAWUy9E7zCfTffNi+2fDiaR35FhgY7+TJGqcPJZts9n7ZMTfKwHTHBN6lHbWEcb86JFuWZFH3McTCZ/i+xuXKyR/xErgF5exJIKknlYRs9k7GMTf6wnzHBMG8MSWZcaeKM2su1E7zMcTCbcwO2/D+SR/iNjgH5fT5GqMvtaFFXm7bIDfKwGX/JNy8GTWZbo+6AXIWRHzqIVTAb/COxvDSyQLxAogF9uRpGqcntZtuzl7ZMSfK3Xj/NNy8GSWZfaeKHGU+ZFH9HWTnduAexPLyyQL7Fjga7fTpGrgPJZto3k7bKA9a3W3nhN6hKTWbfb+qHnImRE77OcTda+i+xvrqeSXYliga/sjpGLAfJZlo7k7bICvK3WvHBPGvIZWEeaeKA3Qy9FHxPUTfdOiO2enOSR31ApgY7+TJGqcvNYRs7k7bNy963W3HNN6tHYWjYLcaAXI+REz1KcTdZeAO2fj6yQDqAogH6exZGrI3hZl77n7GMTfKwG/btMGwIaWbcZsKAXIm9GvameTffMw+xvzS+R/iMqga/sxJBbIfBaN15t7EMydKwmHfNN64OQWEeaeKHno+ZFH1DVTdbfAO2eXq+QLqNjgF/txJGrQLhYZszn7jKjfawG/nBMG2IYWEYrc6HHgy5FPxPUTfZeg+4dta6R/iFjgH69jJB6MLhYZs+v7ZMy9a3W3nhN6hKQWZcZs6AXIC5FPxOfTAbeAO2/bqeSXYliga/sxJBacvJZli5s7EJDfq3W//tOafmSWbao+qHmUGZFPgOfTAa8w+xPLOWR3zPogY+vxJGLYPNYRqzm7ZOQ9q32vLtPGvIZWEeaeKA3oWRE75DXTfafC+2fryyR3mFhgY7+TJGqcvBZt/+s7EIDfKwG3bhNywKQWjYLcaAXI+REz3MeTdZfi+xPz6+R//BggF5fz5IpmfJZt/9k7GJA9632fbtMGhDYWGcbcKMWsu1E7zMeTdYeA+xPjqyQLxJgga6/x5B7ovFZlu9s7ZJAdKwG/bpN64MQWbcb+KHmEedHzqIVTAb/Cu2eXSyR/5MqgY6+xJBaMLhYZi7v7hGo9q33jbhN6+HaWbeYe6A3Y+dFH9HUTlduAexPLy6R/1PggH4+j5B6sfJZl79n7GIB9a3W3nhNy0IbWZapsKA3QWREzxEcTfa/iO9OviWQD5LrgY7dx5GrontYRq2s7ZMz9K3XT/tOafuTWZe4eqHnI+dFP7IUTCeNi+xOneWR3zPoga78j5Bb4/BZl/9n7EOxv63XjfNOSvIZWEcbc6HmEeREz3KeTfa9i+2+XKyQDiJrggxGx5GrY7hYRq7k7ENQ963XT3hMG0HZWZe6cKHnAyxEzzCcTAZ8wO2fLS6R/xLrg19PTZB7gntYZq/n7bMRvq3WvPJN6tPbWEd786JFu2dFP9KeTddOA+2/Lq+QL7PjgF78xZGrI3hZtu3n7GOwvK32/PNNywKSWbd7+KJmsu1E77IUTdeNw+2fLa6R37PigY+sj5B7AvtaFFfn7ZOw9q323nBMO4DbWbc5sqHGkC1FPxMUTfbci+2fLyyR3mFigY9sj5BbIXNaN15t7EOzfKwGvvBMOhHYWbeZs6HHAC1FPxMUTfbei+xPjiaR/1Mqga6cxJBacntaN15t7EOzfKwnznBMO0CTWbaq+6Hnwu9FPzKXTlRni+2ena+R/7ArgY49xpGL4fNYRs7v7hGq963Xj3tMO+DYWEc4+6HHwGdEz9GdTdbfAO2/DyyQD5FigY/uj5BbIXBYZ71k7jKjfawGfLtN64DbWbfb+6HGky9FHxIUTfZeg+4dt6+R/zPiga+tj5GrIfNYRq5s7GOwva3W3nhNy8HYWEboeKHmUGREzkCfTCb+AO9OviWQD5ErgF7ej5BbAXJZlm7k7GID9632H/tOafuTWbd4sKA3QedE7xMfTCb9CO2+nK2R3zPoga59jpGLIbtYR71k7ZOSdK32fPJOavIZWEcYsKHHYGRFHzEcTfYfw+2/rK+R/xJrggxGx5GLgfNYRqyv7bMR96wHTfNMO0PZWZe6cKHngGdFH3MeTfYfiu2/TeeR/xBggg9PTZB7gbhYR77n7bMQvq3WXHNMGhKQWZd786JFu2dFHgKeTfdOAu2/jieQL5EogY58RZGrI3hZtm1k7EMz9q32vrtNyhPbWbcaeqJmsu1E77HWTfZ9i+xvT+eR37FigY6dx5IKknlYRk+v7ZMy9q32nrhNyhIYWZc6s6A3Qm9GvaufTAZdiu2fby+R/1Eoga6+R5GKcfFZlu9s7bNSvK32/nBNylHaWZeaeKHmUSxH7qIVTAZ/w+xvb66R3xBigY79xpGKcnpZl/7v7hGq96wG//BMGyKQWbbq+6HmUWREzzDVTdbfAO2/T66R3iNggH7+j5GLQ7hZl//k7jKjfawGfrhMG0HYWZf5+KA3I2dFP1DXTCYeg+4dt6+QDqMogY68R5GLIfNZtq/m7bMQva3W3nhNywMQWZYq+6HnQeZFH3DXTfZfw+4+viWQD5ArgY9sRJGqs3BYZq1n7GJC963Wf/tOafuTWGf4+KHnQ+dEz3EfTddMi+xvrqeSXYtjgH7fTJGrY3BYRq5u7bMT96wGvHFN60MYWbd6+KAWESxE7oPWTfafC+2eHiSSXoLpgF5djJBb4LhZtu3k7ZNSd63WXLtN6hKbWhUC+6A2US9FP7McTfafi+xPD6+R37FhgY7+TJGLAbtZlu5v7ENwv6wmHbhMOyDYWhYLcaAXoWdEzxOeTddPiO2fr+eQDqJjga4/z5Ipm/BZlk2v7GJB9632vfBMOlETWbf4+aHHA+xFHzKcTfdMwO2fzeeR/1ArgY5exZGrI3hZtk5v7bMRvKwnzPNN64PYWEe7+qJGsu1E77OfTAfMiOxuX66R/qMrgH9tx5GLYvtaFFfk7bOwdq3WHrhMOhHaWbf5s6A3o2VFPxMUTfZ/C+xvb+SQDmBjga7ej5B6M3BaN15t7EOx96wmXbpN6yGTWEf4eKHnIGdE75KXTlRniOxOHK6R/zLrgY69jJGrA3BYZm1l7ZMSfK33zbhN6yCQWbYpsqHHI2RFPxCeTnduAexPrq6R/mPigY9uRJGrg7hYZq2s7GMz/65UZvJN6tCQWZcZsqHnQCxEz3EcTCdMwe2fDySQDzLogH7+x5GqM3JZlm+s7ZICv653b3lMOyHaWbeYs6HnAWRFPoGeTdbeiOxPTqeSXYhgga5fT5Gr4PBZl31k7bOSv632/vFN60MaWbbqeKA2EmZFH5IWTfZeA+xvrKyTZQug="); try { Log($"defaultThresholdArrayStr: {defaultThresholdArrayStr}"); string jsonThresholdArrayStr = Encoding.UTF8.GetString(Convert.FromBase64String(defaultThresholdArrayStr)); Log($"Default Threshold Array Loaded:\n{jsonThresholdArrayStr}"); _thresholdArr = JsonConvert.DeserializeObject<decimal[]>(jsonThresholdArrayStr); } catch (Exception ex) { Log($"Error loading ThresholdArrayStr: {ex.Message}"); Log($"Exception type: {ex.GetType().Name}"); if (ex.InnerException != null) { Log($"Inner exception: {ex.InnerException.Message}"); } } return; // string jsonStr = ObjectStore.Read(ThresholdArrayFileName); // try // { // _thresholdArr = JsonConvert.DeserializeObject<decimal[]>(jsonStr); // var formattedJson = JsonConvert.SerializeObject(_thresholdArr, Formatting.None); // Log($"Threshold array loaded with {_thresholdArr.Length} values. Array: {formattedJson}\nBase64: {Convert.ToBase64String(Encoding.UTF8.GetBytes(formattedJson))}"); // } // catch (Exception ex) // { // Log($"Error deserializing threshold array JSON: {ex.Message}"); // InitializeDefaultThresholdArray(); // } } private void InitializeDefaultThresholdArray() { // Create a default threshold array with 200 points (0.5% resolution) // Values will be distributed according to a Gaussian (Normal) distribution int arraySize = 200; _thresholdArr = new decimal[arraySize]; double mean = 0.5; double stdDev = 0.15; for (int i = 0; i < arraySize; i++) { double x = (double)i / (arraySize - 1); // Apply sigmoid function to approximate Gaussian CDF // This gives a reasonable S-shaped curve similar to the normal distribution CDF double z = (x - mean) / stdDev; double probability = 1.0 / (1.0 + Math.Exp(-z * 1.702)); _thresholdArr[i] = (decimal)probability; } Array.Sort(_thresholdArr); Log( $"Initialized default threshold array with {arraySize} Gaussian-distributed values." ); } private decimal PredictProbability(decimal[] features) { // sklearn RobustScaler equivalent decimal[] scaledFeatures = new decimal[features.Length]; for (int i = 0; i < features.Length; i++) { scaledFeatures[i] = (features[i] - _modelParams.Center[i]) / _modelParams.Scale[i]; } decimal logit = _modelParams.Intercept; for (int i = 0; i < scaledFeatures.Length; i++) { logit += scaledFeatures[i] * _modelParams.Coefficients[i]; } decimal prob = 1m / (1m + (decimal)Math.Exp(-(double)logit)); return prob; } private decimal GetProbabilityPercentile(decimal probability) { // If threshold array is not loaded, initialize it with default values if (_thresholdArr == null || _thresholdArr.Length == 0) { InitializeDefaultThresholdArray(); } int index = Array.BinarySearch(_thresholdArr, probability); if (index >= 0) { return (decimal)index / (_thresholdArr.Length - 1); } else { // No direct match - get the insertion point int insertPoint = ~index; if (insertPoint == 0) { return 0m; // Probability is lower than all values in the array } else if (insertPoint >= _thresholdArr.Length) { return 1m; // Probability is higher than all values in the array } else { // Interpolate between the two closest points decimal lowerProb = _thresholdArr[insertPoint - 1]; decimal upperProb = _thresholdArr[insertPoint]; decimal lowerPct = (decimal)(insertPoint - 1) / (_thresholdArr.Length - 1); decimal upperPct = (decimal)insertPoint / (_thresholdArr.Length - 1); // Linear interpolation decimal ratio = (probability - lowerProb) / (upperProb - lowerProb); return lowerPct + ratio * (upperPct - lowerPct); } } } } }