Overall Statistics
Total Orders
118
Average Win
0.99%
Average Loss
-0.81%
Compounding Annual Return
45.365%
Drawdown
10.600%
Expectancy
0.237
Start Equity
100000
End Equity
124520.40
Net Profit
24.520%
Sharpe Ratio
1.542
Sortino Ratio
1.881
Probabilistic Sharpe Ratio
71.216%
Loss Rate
44%
Win Rate
56%
Profit-Loss Ratio
1.23
Alpha
0.372
Beta
-0.7
Annual Standard Deviation
0.171
Annual Variance
0.029
Information Ratio
0.486
Tracking Error
0.227
Treynor Ratio
-0.378
Total Fees
$682.94
Estimated Strategy Capacity
$7200000.00
Lowest Capacity Asset
AAPL R735QTJ8XC9X
Portfolio Turnover
109.33%
from AlgorithmImports import *
from QuantConnect.DataSource import *

class TiingoNewsDataAlgorithm(QCAlgorithm):

    current_holdings = 0
    target_holdings = 0
    word_scores = {'good': 1, 'great': 1, 'best': 1, 'growth': 1,
                   'bad': -1, 'terrible': -1, 'worst': -1, 'loss': -1}

    def initialize(self) -> None:
        self.set_start_date(2023, 9, 1)
        self.set_end_date(2024, 4, 1)
        self.set_cash(100000)
        
        # Requesting data
        self.aapl = self.add_equity("AAPL", Resolution.MINUTE).symbol
        self.tiingo_symbol = self.add_data(TiingoNews, self.aapl).symbol
        
        # Historical data
        history = self.history(self.tiingo_symbol, 14, Resolution.DAILY)
        self.debug(f"We got {len(history)} items from our history request")
        
        
    def on_data(self, slice: Slice) -> None:
        if slice.contains_key(self.tiingo_symbol):
            # Assign a sentiment score to the news article
            title_words = slice[self.tiingo_symbol].description.lower()
            score = 0
            for word, word_score in self.word_scores.items():
                if word in title_words:
                    score += word_score
                    
            if score > 0:
                self.target_holdings = -1
                
            elif score < 0:
                self.target_holdings = 1
        
        # Buy or short sell if the sentiment has changed from our current holdings
        if slice.contains_key(self.aapl) and self.current_holdings != self.target_holdings:
            self.set_holdings(self.aapl, self.target_holdings)
            self.current_holdings = self.target_holdings