Overall Statistics |
Total Trades 8 Average Win 0% Average Loss 0% Compounding Annual Return -12.113% Drawdown 6.100% Expectancy 0 Net Profit -5.234% Sharpe Ratio -2.097 Probabilistic Sharpe Ratio 0.650% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.136 Beta 0.302 Annual Standard Deviation 0.048 Annual Variance 0.002 Information Ratio -2.536 Tracking Error 0.085 Treynor Ratio -0.334 Total Fees $0.00 |
class EMABasedStrategy(QCAlgorithm): def Initialize(self): #Initialize Dates, Cash, Equities, Fees, Allocation, Parameters, Indicators, Charts # Set Start Date, End Date, and Cash #------------------------------------------------------- self.SetTimeZone(TimeZones.NewYork) #EDIT: Added Timezon self.SetStartDate(2011, 1, 1) # Set Start Date self.SetEndDate(2011, 6, 1) # Set End Date self.SetCash(10000) # Set Strategy Cash #------------------------------------------------------- # Set Custom Universe #------------------------------------------------------- self.AddUniverse(self.CoarseSelectionFilter, self.FineSelectionFilter) self.UniverseSettings.Resolution = Resolution.Hour #Needs to change to Resolution.Minute once code works, leaving Daily for now to minimize data self.UniverseSettings.SetDataNormalizationMode = DataNormalizationMode.SplitAdjusted self.UniverseSettings.FeeModel = ConstantFeeModel(0.0) self.UniverseSettings.Leverage = 1 self.SetBrokerageModel(BrokerageName.Alpaca, AccountType.Cash) #EDIT: Added Brokerage, appears to have set fees to zero #------------------------------------------------------- # Set Contants #------------------------------------------------------- self.EMA_Period_Fast = 20 self.EMA_Period_Slow = 200 self.EMA_Period_Medium = 50 self.__numberOfSymbols = 100 self.__numberOfSymbolsFine = 5 #------------------------------------------------------- # Define Percentage Allocation and variables #------------------------------------------------------- self.percentagebuy = 0.05 self.stopLossPercent = 0.9 self.indicators = {} self.highestSymbolPrice = -1 #------------------------------------------------------- def CoarseSelectionFilter(self, coarse): sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # sort descending by daily dollar volume return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] # return the symbol objects of the top entries from our sorted collection def FineSelectionFilter(self, fine): # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' sortedByPeRatio = sorted(fine, key=lambda x: x.OperationRatios.OperationMargin.Value, reverse=False) # sort descending by P/E ratio self.universe = [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ] # take the top entries from our sorted collection return self.universe def OnSecuritiesChanged(self, changes): # Create indicator for each new security for security in changes.AddedSecurities: self.indicators[security.Symbol] = SymbolData(security.Symbol, self, self.EMA_Period_Fast, self.EMA_Period_Slow, self.EMA_Period_Medium) # for security in changes.RemovedSecurities: # if security.Invested: # self.Liquidate(security.Symbol, "Universe Removed Security") # if security in self.indicators: # self.indicators.pop(security.Symbol, None) def OnData(self, data): #Entry Point for Data and algorithm - Check Data, Define Buy Quantity, Process Volume, Check Portfolio, Check RSI, Execute Buy/Sell orders, Chart Plots for symbol in self.universe: if not data.ContainsKey(symbol): #Tested and Valid/Necessary continue if data[symbol] is None: #Tested and Valid/Necessary continue if not symbol in self.indicators: #Tested and Valid/Necessary continue # Ensure indicators are ready to update rolling windows if not self.indicators[symbol].slow_ema.IsReady: continue # Update EMA rolling windows self.indicators[symbol].fast_ema_window.Add(self.indicators[symbol].get_fast_EMA()) self.indicators[symbol].slow_ema_window.Add(self.indicators[symbol].get_slow_EMA()) self.indicators[symbol].medium_ema_window.Add(self.indicators[symbol].get_medium_EMA()) # Check for Indicator Readiness within Rolling Window #------------------------------------------------------- if not (self.indicators[symbol].fast_ema_window.IsReady and self.indicators[symbol].slow_ema_window.IsReady and self.indicators[symbol].medium_ema_window.IsReady): continue #return #EDIT #EXECUTE TRADING LOGIC HERE - # if self.Portfolio[symbol].Invested: # # Sell condition # if (self.indicators[symbol].fast_ema_window[1] >= self.indicators[symbol].slow_ema_window[1]) and (self.indicators[symbol].fast_ema_window[4] < self.indicators[symbol].slow_ema_window[4]): # self.Liquidate(symbol) # # Buy conditions # elif self.Portfolio.MarginRemaining > 0.9 * self.percentagebuy * self.Portfolio.TotalPortfolioValue: # if self.indicators[symbol].fast_ema_window[1] <= self.indicators[symbol].slow_ema_window[1] and \ # (self.indicators[symbol].fast_ema_window[4] > self.indicators[symbol].slow_ema_window[4]): # self.buyquantity = round((self.percentagebuy*self.Portfolio.TotalPortfolioValue)/data[symbol].Close) # self.MarketOrder(symbol, self.buyquantity) if self.Portfolio[symbol].Invested: # if self.indicators[symbol].is_buy_signal_liquidate(): # self.Debug(str(self.Time) + " Liquidating : " + str(symbol) + 'Quantity -->' + str(self.Portfolio[symbol].Quantity)) # self.Liquidate(symbol) # el if self.Securities[symbol].Close > self.highestSymbolPrice: self.highestSymbolPrice = self.Securities[symbol].Close updateFields = UpdateOrderFields() updateFields.StopPrice = self.highestSymbolPrice * 0.9 self.stopMarketTicket.Update(updateFields) self.Debug('inside trailing SL update OLD-->' + str(self.Securities[symbol].Close) + ' New -->' + str(updateFields.StopPrice)) # if self.Securities[symbol].Holdings.UnrealizedProfitPercent < 0.1: # self.Debug('Liquidate after 20% loss on trade' + str(symbol)) # self.Liquidate(symbol) if self.Portfolio.MarginRemaining > self.percentagebuy * self.Portfolio.TotalPortfolioValue: if not self.Portfolio[symbol].Invested and self.indicators[symbol].is_buy_signal(): self.buyquantity = round((self.percentagebuy*self.Portfolio.TotalPortfolioValue)/data[symbol].Close) ticket = self.MarketOrder(symbol, self.buyquantity) # Put a trailing stop loss order at same time self.stopMarketTicket = self.StopMarketOrder(symbol, self.buyquantity, self.stopLossPercent * data[symbol].Close) updateSettings = UpdateOrderFields() updateSettings.Tag = "Our New Tag for SPY Trade. Medium 0 -->" + str(self.indicators[symbol].medium_ema_window[0]) + 'Slow 0 ->' + str(self.indicators[symbol].slow_ema_window[0]) + 'Medium 1 ->' + str(self.indicators[symbol].medium_ema_window[1]) + 'Slow 1 ->' + str(self.indicators[symbol].slow_ema_window[1]) ticket.Update(updateSettings) self.highestSymbolPrice = self.Securities[symbol].Close class SymbolData(object): rolling_window_length = 2 def __init__(self, symbol, context, fast_ema_period, slow_ema_period, medium_ema_period): self.symbol = symbol self.fast_ema_period = fast_ema_period self.slow_ema_period = slow_ema_period self.medium_ema_period = medium_ema_period self.fast_ema = context.EMA(symbol, self.fast_ema_period, Resolution.Hour) #, fillDataForward = True, leverage = 1, extendedMarketHours = False) self.slow_ema = context.EMA(symbol, self.slow_ema_period, Resolution.Hour) #, fillDataForward = True, leverage = 1, extendedMarketHours = False) self.medium_ema = context.EMA(symbol, self.medium_ema_period, Resolution.Hour) self.fast_ema_window = RollingWindow[float](self.rolling_window_length) self.slow_ema_window = RollingWindow[float](self.rolling_window_length) self.medium_ema_window = RollingWindow[float](self.rolling_window_length) # Warm up EMA indicators history = context.History([symbol], slow_ema_period + self.rolling_window_length, Resolution.Hour) for time, row in history.loc[symbol].iterrows(): self.fast_ema.Update(time, row["close"]) self.slow_ema.Update(time, row["close"]) self.medium_ema.Update(time, row["close"]) # Warm up rolling windows if self.fast_ema.IsReady: self.fast_ema_window.Add(self.fast_ema.Current.Value) if self.slow_ema.IsReady: self.slow_ema_window.Add(self.slow_ema.Current.Value) if self.medium_ema.IsReady: self.medium_ema_window.Add(self.medium_ema.Current.Value) def get_fast_EMA(self): return self.fast_ema.Current.Value def get_slow_EMA(self): return self.slow_ema.Current.Value def get_medium_EMA(self): return self.medium_ema.Current.Value def is_buy_signal(self): if self.medium_ema_window[0] > self.slow_ema_window[0] and \ self.medium_ema_window[1] < self.slow_ema_window[1]: if self.fast_ema_window[0] > self.slow_ema_window[0]: return True def is_buy_signal_liquidate(self): return self.fast_ema_window[0] < self.slow_ema_window[0] and \ self.fast_ema_window[1] > self.slow_ema_window[1]