Overall Statistics |
Total Trades 16 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $16.50 |
clr.AddReference('QuantConnect.Research') from QuantConnect.Research import QuantBook class TachyonMultidimensionalChamber(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 11, 19) # Set Start Date self.SetEndDate(2020, 11, 19) # Set Start Date self.SetCash(400000) # Set Strategy Cash self.AddUniverse(self.CoarseSelectionFunction) self.UniverseSettings.ExtendedMarketHours = True self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) self.UniverseSettings.Leverage = 4 #self.UniverseSettings.Resolution = Resolution.Hour #can comment/change this out #indicators self.vwap = {} self.atr = {} self.ema5 = {} #on 1 minute chart self.ema9 = {} self.hod = {} self.lod = {} self.open = {} #self.pmhigh = {} #self.pmlow = {} for s in self.Securities: self.Debug(self.Securities[s]) def CoarseSelectionFunction(self, universe): selected = [] for coarse in universe: if coarse.Volume > 70000000 and coarse.Value > 10 and coarse.HasFundamentalData: #tickers selected.append(coarse.Symbol) #indicators self.vwap[coarse.Symbol] = self.VWAP(self.AddEquity(coarse.Symbol.Value, Resolution.Minute, Market.USA, True, 1, True).Symbol, 100000) self.ema5[coarse.Symbol] = self.EMA(self.AddEquity(coarse.Symbol.Value, Resolution.Minute, Market.USA, True, 1, True).Symbol, 5) self.ema9[coarse.Symbol] = self.EMA(self.AddEquity(coarse.Symbol.Value, Resolution.Minute, Market.USA, True, 1, True).Symbol, 9) return selected #list of objects of type Symbol #is it during market hours or not (e.g. for getting hod and lod) def isMarketHours(self): if ( (self.Time.hour == 9 and self.Time.minute >= 30) or self.Time.hour >= 10) and (self.Time.hour <= 15): return True else: return False #sizing def positionSize(self, stop, currPrice, dollarSize): nShares = int(dollarSize / abs(stop - currPrice)) return nShares def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' #for k in self.vwap: # self.Log(type(k)) #<class 'QuantConnect.Symbol'> tradeBars = data.Bars #OHLC of past time interval #self.Debug(self.Time) self.Debug(self.Securities) for d in self.vwap: #can't just get tickers from data? if self.isMarketHours(): #this block should not execute in practice since PM data should always be used if d not in self.hod: self.hod[d] = -1.0 self.lod[d] = 2000000000.0 self.open[d] = -1.0 #get hod and lod if tradeBars[d].High > self.hod[d]: self.hod[d] = tradeBars[d].High if tradeBars[d].Low < self.lod[d]: self.lod[d] = tradeBars[d].Low if self.open[d] == -1.0: self.open[d] = tradeBars[d].Open ################ # trade setups # ################ #self.Debug(self.Time) ### above VWAP and short-term trend up, then ORB price = float(tradeBars[d].Close) vwap = self.vwap[d].Current.Value ema = self.ema5[d].Current.Value hod = float(self.hod[d]) lod = float(self.lod[d]) ema9 = self.ema9[d].Current.Value size = 10.0 if self.Portfolio[d].Invested == False and self.Portfolio.MarginRemaining > size: if price > vwap and ema > vwap and (price > ((hod + lod)/2) ) and self.Time.hour < 15: #long #self.Debug("lod " + str(lod)) stop = self.lod[d] shares = self.positionSize(stop, price, size) self.Debug(self.Time) self.Debug("New long") self.Debug("margin remaining: " + str(self.Portfolio.MarginRemaining)) self.Debug("nShares: " + str(self.Portfolio[d].Quantity)) self.Debug(d) self.Debug("nShares: " + str(shares)) self.Debug("currPrice: " + str(price)) self.Debug("stop: " + str(lod)) self.Debug("buying power used: " + str(shares*price)) self.Debug("") self.MarketOrder(d, shares) stop = -1*shares self.StopMarketOrder(d, stop, lod) elif self.Portfolio[d].Invested == True: if ema < ema9 and price < ema9 and self.Portfolio[d].UnrealizedProfit > size: self.Liquidate(d) if self.Time.hour >= 15: self.Liquidate() else: #should only need to do this once... self.hod[d] = -1.0 self.lod[d] = 2000000000 self.open[d] = -1.0 # self.Debug(d) # self.Debug(self.vwap[d]) # self.Debug(self.ema5[d]) # self.Debug(self.hod[d]) # self.Debug(self.lod[d])