Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.848 Tracking Error 0.223 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# TaLib DEMA from AlgorithmImports import * # https://www.quantconnect.com/project/9660424 import numpy as np import talib STOCK = 'SPY'; PERIOD = 50; class TaLibDEMA(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 1, 31) self.SetEndDate(2021, 10, 20) self.SetWarmUp(5*PERIOD, Resolution.Daily) self.stock = self.AddEquity(STOCK, Resolution.Daily).Symbol self.rollingWindow = RollingWindow[TradeBar](5*PERIOD) self.Consolidate(self.stock, Resolution.Daily, self.CustomBarHandler) def CustomBarHandler(self, bar): self.rollingWindow.Add(bar) if self.IsWarmingUp: return if not self.rollingWindow.IsReady: return highs = np.flipud(np.array([self.rollingWindow[i].High for i in range(5*PERIOD)])) lows = np.flipud(np.array([self.rollingWindow[i].Low for i in range(5*PERIOD)])) closes = np.flipud(np.array([self.rollingWindow[i].Close for i in range(5*PERIOD)])) talib_midprice = float(talib.MIDPRICE(highs,lows,2)[-1]) talib_dema = float(talib.DEMA(closes, PERIOD)[-1]) self.Plot("Indicator", "talib_midprice", talib_midprice) self.Plot("Indicator", "talib_dema", talib_dema)