Overall Statistics
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from System import *
from QuantConnect import *
from QuantConnect.Data.Consolidators import *
from QuantConnect.Data.Market import *
from QuantConnect.Orders import OrderStatus
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Indicators import *
import numpy as np
from datetime import timedelta, datetime
from QuantConnect.Data.UniverseSelection import *
from clr import AddReference
AddReference("System.Core")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm")





### <summary>
### Demonstration of using coarse and fine universe selection together to filter down a smaller universe of stocks.
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="universes" />
### <meta name="tag" content="coarse universes" />
### <meta name="tag" content="fine universes" />
class CoarseFundamentalTop3Algorithm(QCAlgorithm):

    def Initialize(self):
        '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
  # This is the period of bars we'll be creating
        BarPeriod = TimeSpan.FromMinutes(10)
        # This is the period of our sma indicators
        SimpleMovingAveragePeriod = 10
        # This is the number of consolidated bars we'll hold in symbol data for reference
        RollingWindowSize = 10
        # Holds all of our data keyed by each symbol
        self.Data = {}
        # Contains all of our equity symbols
        #EquitySymbols = ["AAPL","SPY","IBM"]
        self.EquitySymbols = 0
        # Contains all of our forex symbols

        self.SetStartDate(2014, 12, 1)
        self.SetEndDate(2015, 2, 1)
        self.SetCash(50000)            #Set Strategy Cash

        # initialize our equity data
        for symbol in self.EquitySymbols:
            equity = self.AddEquity(symbol)
            self.Data[symbol] = SymbolData(equity.Symbol, BarPeriod, RollingWindowSize)
        

        # loop through all our symbols and request data subscriptions and initialize indicator
        for symbol, symbolData in self.Data.items():
            # define the indicator
            symbolData.SMA = SimpleMovingAverage(self.CreateIndicatorName(symbol, "SMA" + str(SimpleMovingAveragePeriod), Resolution.Minute), SimpleMovingAveragePeriod)
            # define a consolidator to consolidate data for this symbol on the requested period
            consolidator = TradeBarConsolidator(BarPeriod)
            # write up our consolidator to update the indicator
            consolidator.DataConsolidated += self.OnDataConsolidated
            # we need to add this consolidator so it gets auto updates
            self.SubscriptionManager.AddConsolidator(symbolData.Symbol, consolidator)




        # what resolution should the data *added* to the universe be?
        self.UniverseSettings.Resolution = Resolution.Daily

        # this add universe method accepts a single parameter that is a function that
        # accepts an IEnumerable<CoarseFundamental> and returns IEnumerable<Symbol>
        self.AddUniverse(self.CoarseSelectionFunction)

        self.__numberOfSymbols = 3
        self._changes = None


    # sort the data by daily dollar volume and take the top 'NumberOfSymbols'
    def CoarseSelectionFunction(self, coarse):
        # sort descending by daily dollar volume
        sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)

        # return the symbol objects of the top entries from our sorted collection
        return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ]


    def OnData(self, data):

        self.Log(f"OnData({self.UtcTime}): Keys: {', '.join([key.Value for key in data.Keys])}")

        # if we have no changes, do nothing
        if self._changes is None: return

        # liquidate removed securities
        for security in self._changes.RemovedSecurities:
            if security.Invested:
                self.Liquidate(security.Symbol)

        # we want 1/N allocation in each security in our universe
        for security in self._changes.AddedSecurities:
            self.SetHoldings(security.Symbol, 1 / self.__numberOfSymbols)

        self._changes = None


    # this event fires whenever we have changes to our universe
    def OnSecuritiesChanged(self, changes):
        self._changes = changes
        self.Log(f"OnSecuritiesChanged({self.UtcTime}):: {changes}")
        self.EquitySymbols = self._changes
         
    def OnOrderEvent(self, fill):
        self.Log(f"OnOrderEvent({self.UtcTime}):: {fill}")
        
    def OnDataConsolidated(self, sender, bar):
        
        self.Data[bar.Symbol.Value].SMA.Update(bar.Time, bar.Close)
        self.Data[bar.Symbol.Value].Bars.Add(bar)

    # OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
    # Argument "data": Slice object, dictionary object with your stock data 
    def OnData(self,data):
        
        # loop through each symbol in our structure
        for symbol in self.Data.keys():
            symbolData = self.Data[symbol]
            # this check proves that this symbol was JUST updated prior to this OnData function being called
            if symbolData.IsReady() and symbolData.WasJustUpdated(self.Time):
                if not self.Portfolio[symbol].Invested:
                    self.MarketOrder(symbol, 1)

    # End of a trading day event handler. This method is called at the end of the algorithm day (or multiple times if trading multiple assets).
    # Method is called 10 minutes before closing to allow user to close out position.
    def OnEndOfDay(self):
        
        i = 0
        for symbol in sorted(self.Data.keys()):
            symbolData = self.Data[symbol]
            # we have too many symbols to plot them all, so plot every other
            i += 1
            if symbolData.IsReady() and i%2 == 0:
                self.Plot(symbol, symbol, symbolData.SMA.Current.Value)
    
       
class SymbolData(object):
    
    def __init__(self, symbol, barPeriod, windowSize):
        self.Symbol = symbol
        # The period used when population the Bars rolling window
        self.BarPeriod = barPeriod
        # A rolling window of data, data needs to be pumped into Bars by using Bars.Update( tradeBar ) and can be accessed like:
        # mySymbolData.Bars[0] - most first recent piece of data
        # mySymbolData.Bars[5] - the sixth most recent piece of data (zero based indexing)
        self.Bars = RollingWindow[IBaseDataBar](windowSize)
        # The simple moving average indicator for our symbol
        self.SMA = None
  
    # Returns true if all the data in this instance is ready (indicators, rolling windows, ect...)
    def IsReady(self):
        return self.Bars.IsReady and self.SMA.IsReady

    # Returns true if the most recent trade bar time matches the current time minus the bar's period, this
    # indicates that update was just called on this instance
    def WasJustUpdated(self, current):
        return self.Bars.Count > 0 and self.Bars[0].Time == current - self.BarPeriod