Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 17.424 Tracking Error 0.002 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
import pandas as pd import numpy as np class TestingAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2021,4,26) self.SetEndDate(2021,4,28) self.SetCash(10000) self.UniverseSettings.Resolution = Resolution.Minute self.AddUniverse(self.CoarseFilterFunction, self.FineFilterFunction) self.spy = self.AddEquity("SPY") self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", 60), self.MainFunction) # Coarse filter def CoarseFilterFunction(self, coarse): coarse_ = [x.Symbol for x in coarse if x.DollarVolume > 100000000 and x.HasFundamentalData] return coarse_ # fine Filter def FineFilterFunction(self, fine): self.tickers = [x.Symbol for x in fine] return self.tickers def MainFunction(self): # series for 1-d data with only 1 input self.series = pd.Series() # dataframe for 2-d data with more input dimensions self.df = pd.DataFrame() # appending by symbol for symbol in self.tickers: self.series = self.series.append(pd.Series([self.Securities[symbol].Fundamentals.MarketCap], index=[symbol])) self.df = self.df.append(pd.DataFrame([[self.Securities[symbol].Fundamentals.MarketCap, self.Securities[symbol].Fundamentals.ValuationRatios.PERatio]], index=[symbol], columns=["market cap", "PE Ratio"])) self.Log(self.series) self.Log(self.df)