Overall Statistics |
Total Trades 21 Average Win 6.40% Average Loss -0.31% Compounding Annual Return 10.717% Drawdown 14.200% Expectancy 16.441 Net Profit 82.988% Sharpe Ratio 0.886 Probabilistic Sharpe Ratio 39.193% Loss Rate 20% Win Rate 80% Profit-Loss Ratio 20.80 Alpha 0.006 Beta 0.914 Annual Standard Deviation 0.122 Annual Variance 0.015 Information Ratio -0.116 Tracking Error 0.03 Treynor Ratio 0.119 Total Fees $56.61 |
from QuantConnect.Data.Custom.TradingEconomics import * class TradingEconomicsInterestRateAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2013, 11, 1) self.SetEndDate(2019, 10, 3); self.SetCash(100000) self.AddEquity("AGG", Resolution.Hour) self.AddEquity("SPY", Resolution.Hour) self.interestRate = self.AddData(TradingEconomicsCalendar, TradingEconomics.Calendar.UnitedStates.InterestRate).Symbol # Request 365 days of interest rate history with the TradingEconomicsCalendar custom data Symbol. history = self.History(TradingEconomicsCalendar, self.interestRate, 365, Resolution.Daily) # Count the number of items we get from our history request (should be five) self.Debug(f"We got {len(history)} items from our history request") def OnData(self, data): # Make sure we have an interest rate calendar event if not data.ContainsKey(self.interestRate): return announcement = data[self.interestRate] # Confirm its a FED Rate Decision if announcement.Event != TradingEconomics.Event.UnitedStates.FedInterestRateDecision: return # In the event of a rate increase, rebalance 50% to Bonds. interestRateDecreased = announcement.Actual <= announcement.Previous if interestRateDecreased: self.SetHoldings("SPY", 1) self.SetHoldings("AGG", 0) else: self.SetHoldings("SPY", 0.5) self.SetHoldings("AGG", 0.5)