Overall Statistics |
Total Trades 854 Average Win 0.16% Average Loss -0.12% Compounding Annual Return -16.454% Drawdown 42.800% Expectancy -0.170 Net Profit -16.413% Sharpe Ratio -0.164 Probabilistic Sharpe Ratio 9.992% Loss Rate 65% Win Rate 35% Profit-Loss Ratio 1.36 Alpha -0.121 Beta 0.24 Annual Standard Deviation 0.401 Annual Variance 0.161 Information Ratio -0.656 Tracking Error 0.452 Treynor Ratio -0.274 Total Fees $0.00 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") AddReference("QuantConnect.Indicators") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Risk import * from QuantConnect.Algorithm.Framework.Alphas import * from QuantConnect.Orders.Fees import ConstantFeeModel from QuantConnect.Algorithm.Framework.Selection import * from QuantConnect.Algorithm.Framework.Execution import * from QuantConnect.Algorithm.Framework.Portfolio import * import numpy as np import math class PriceGapMeanReversionAlpha(QCAlgorithm): '''The motivating idea for this Alpha Model is that a large price gap (here we use true outliers -- price gaps that whose absolutely values are greater than 3 * Volatility) is due to rebound back to an appropriate price or at least retreat from its brief extreme. Using a Coarse Universe selection function, the algorithm selects the top x-companies by Dollar Volume (x can be any number you choose) to trade with, and then uses the Standard Deviation of the 100 most-recent closing prices to determine which price movements are outliers that warrant emitting insights. This alpha is part of the Benchmark Alpha Series created by QuantConnect which are open sourced so the community and client funds can see an example of an alpha.''' def Initialize(self): self.SetStartDate(2019, 8, 31) # Set Start Date self.SetEndDate(2020, 8, 30) # Set Start Date self.SetCash(100000) #Set Strategy Cash #self.SetWarmup(15) ## Initialize variables to be used in controlling frequency of universe selection self.week = -1 symbl = [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in ['IBM','GE']] #symbl = self.AddEquity("IBM", Resolution.Daily) ## Subscribe to hourly TradeBars ## Manual Universe Selection self.UniverseSettings.Resolution = Resolution.Daily self.SetUniverseSelection( ManualUniverseSelectionModel(symbl) ) self.AddUniverseSelection(FineFundamentalUniverseSelectionModel(self.SelectCoarse, self.SelectFine)) ## Set trading fees to $0 self.SetSecurityInitializer(lambda security: security.SetFeeModel(ConstantFeeModel(0))) ## Set custom Alpha Model self.SetAlpha(PriceGapMeanReversionAlphaModel()) ## Set equal-weighting Portfolio Construction Model self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) ## Set Execution Model self.SetExecution(ImmediateExecutionModel()) ## Set Risk Management Model self.SetRiskManagement(NullRiskManagementModel()) def SelectCoarse(self, coarse): tickers = ["AAPL", "AIG", "IBM"] return [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in tickers] def SelectFine(self, fine): return [f.Symbol for f in fine] class PriceGapMeanReversionAlphaModel: def __init__(self, *args, **kwargs): ''' Initialize variables and dictionary for Symbol Data to support algorithm's function ''' self.lookback = 15 self.window = RollingWindow[float](10) self.trendWindow = RollingWindow[int](10) self.ST_Period = 15 self.ST_Coeff = 1 self.Name = 'TosAlphaModel' self.resolution = kwargs['resolution'] if 'resolution' in kwargs else Resolution.Daily self.prediction_interval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), 5) ## Arbitrary self.symbolDataBySymbol = {} def Update(self, algorithm, data): insights = [] ## Loop through all Symbol Data objects for symbol, symbolData in self.symbolDataBySymbol.items(): ## Evaluate whether or not the price jump is expected to rebound if not symbolData.IsTrend(data): continue ## Emit insights accordingly to the price jump sign #direction = flat direction = InsightDirection.Down if symbolData.trendDir1 > 0 else InsightDirection.Up insights.append(Insight.Price(symbol, self.prediction_interval, direction, None)) algorithm.Log(" Symbol:" + str(symbol) + " Open:" + str(symbolData.o) + " high:" + str(symbolData.h) + " low:" + str(symbolData.l) + " close:" + str(symbolData.c) + " pre_close:" + str(symbolData.pre_close) + #" pre_ha_close:" + str(round(symbolData.pre_ha_close,2)) + " ha_close:" + str(round(symbolData.ha_close,2)) + #" pre_ha_open:" + str(round(symbolData.ha_open_pre,2)) + " ha_open:" + str(round(symbolData.ha_open,2)) + " ha_high:" + str(round(symbolData.ha_high,2)) + " ha_low:" + str(round(symbolData.ha_low,2)) + " hahl2:" + str(round(symbolData.hahl2_1,2)) + " tmpUp:" + str(round(symbolData.tmpUp1,2)) + " tmpDn:" + str(round(symbolData.tmpDn1,2)) + " finalDn:" + str(round(symbolData.finalDn1,2)) + " finalUp:" + str(round(symbolData.finalUp1,2)) + " atr:" + str(symbolData.atr) + " trendDir:" + str(symbolData.trendDir1) ) return insights def OnSecuritiesChanged(self, algorithm, changes): # Clean up data for removed securities for removed in changes.RemovedSecurities: symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None) if symbolData is not None: symbolData.RemoveConsolidators(algorithm) symbols = [x.Symbol for x in changes.AddedSecurities if x.Symbol not in self.symbolDataBySymbol] history = algorithm.History(symbols, self.lookback, self.resolution) if history.empty: return ## Create and initialize SymbolData objects for symbol in symbols: symbolData = SymbolData(algorithm, symbol, self.lookback, self.resolution, 'TOS', self.ST_Period,self.ST_Coeff,self.window,self.trendWindow) symbolData.WarmUpIndicators(history.loc[symbol]) self.symbolDataBySymbol[symbol] = symbolData class SymbolData: def __init__(self, algorithm, symbol, lookback, resolution,name, period, coeff, window, trendWindow): self.symbol = symbol self.close = 0 self.PriceJump = 0 self.Name = name self.IsReady = False self.o = self.h = self.l = self.c = self.ha_close = self.ha_open = self.ha_high = 0 self.pre_close = 0 self.pre_ha_close = 0 self.ha_low = self.hahl2_1 = self.trendDir1 = 0 self.trendDir = trendWindow self.last_price = window self._open = window self._close = window self.tmpUp = self.tmpDn = self.finalUp = self.finalDn = window self.tmpUp1 = self.tmpDn1 = self.finalUp1 = self.finalDn1 = 0 self.super_trend = 0 self.atr = AverageTrueRange(period, MovingAverageType.Wilders) self.coeff = coeff self.consolidator = algorithm.ResolveConsolidator(symbol, resolution) self.volatility = StandardDeviation(f'{symbol}.STD({lookback})', lookback) algorithm.RegisterIndicator(symbol, self.volatility, self.consolidator) def RemoveConsolidators(self, algorithm): algorithm.SubscriptionManager.RemoveConsolidator(self.symbol, self.consolidator) def WarmUpIndicators(self, history): self.close = history.iloc[-1].close for tuple in history.itertuples(): self.volatility.Update(tuple.Index, tuple.close) def IsTrend(self, data): ## Check for any data events that would return a NoneBar in the Alpha Model Update() method if not data.Bars.ContainsKey(self.symbol): return False self.atr.Update(data.Bars[self.symbol]) if self.atr.IsReady: self.o = data.Bars[self.symbol].Open ## Open price self.h = data.Bars[self.symbol].High ## High price self.l = data.Bars[self.symbol].Low ## Low price self.c = last_price = data.Bars[self.symbol].Close ## Close price self.last_price.Add(last_price) #check last_price is ready or not if not self.last_price.IsReady: self.pre_close = 0 else: self.pre_close = self.last_price[1] _close = (self.o + self.h + self.l + self.c) / 4.0 self._close.Add(_close) #check _close is ready or not if not self._close.IsReady: self.IsReady = False return else: self.ha_close = self._close[1] #self.pre_ha_close = self._close[0] _open = (self.o + self.c) / 2.0 self._open.Add(_open) #check _close is ready or not if not self._open.IsReady: self.ha_open = (self._open[0] + self._close[0]) / 2.0 else: self.ha_open = (self._open[1] + self._close[1]) / 2.0 self.ha_high = Math.Max(self.o, Math.Max(self.ha_open, self.ha_close)) self.ha_low = Math.Min(self.l, Math.Min(self.ha_open, self.ha_close)) self.hahl2_1 = (self.ha_high + self.ha_low) / 2 tmpUp = self.hahl2_1 - (self.atr.Current.Value * self.coeff) self.tmpUp.Add(tmpUp) self.tmpUp1 = self.tmpUp[0] tmpDn = self.hahl2_1 + (self.atr.Current.Value * self.coeff) self.tmpDn.Add(tmpDn) self.tmpDn1 = self.tmpDn[0] # register final up and final down in rolling window self.finalUp.Add(tmpUp) self.finalUp1 = self.finalUp[0] self.finalDn.Add(tmpDn) self.finalDn1 = self.finalDn[0] if self.pre_close > self.finalUp[1]: self.finalUp[0] = max(self.tmpUp[0], self.finalUp[1]) else: self.finalUp[0] = self.tmpUp[0] if self.pre_close < self.finalDn[1]: self.finalDn[0] = min(self.tmpDn[0], self.finalDn[1]) else: self.finalDn[0] = self.tmpDn[0] # calculate trendDir if data.Bars[self.symbol].Close > self.finalDn[1]: trendDir = 1 elif data.Bars[self.symbol].Close < self.finalUp[1]: trendDir = -1 # adding trendDir in rolling window self.trendDir.Add(trendDir) if not self.trendDir.IsReady: self.IsReady = False return else: self.trendDir1 = self.trendDir[0] if not math.isnan(self.trendDir1): self.trendDir[0] = self.trendDir1 else: self.trendDir[0] = 1 self.trendDir1 = self.trendDir[0] return self.trendDir1