Overall Statistics
Total Trades
698
Average Win
1.93%
Average Loss
-0.04%
Compounding Annual Return
175.403%
Drawdown
6.900%
Expectancy
39.192
Net Profit
634.769%
Sharpe Ratio
0.625
Loss Rate
28%
Win Rate
72%
Profit-Loss Ratio
54.87
Alpha
1.757
Beta
0.344
Annual Standard Deviation
2.827
Annual Variance
7.993
Information Ratio
0.614
Tracking Error
2.828
Treynor Ratio
5.145
Total Fees
$669.68
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Algorithm;
using QuantConnect.Data.Market;

namespace QuantConnect {
	/// <summary>
	/// QuantConnect QuantFramework Algorithm
	///
	///     Alpha Generation Module: 
	///
	/// </summary>
	public partial class QCUQuantFramework : QCAlgorithm {

		/// <summary>
		/// Alpha Generator Module:
		/// </summary>
		public class ModuleAlpha {
			/******************************************************** 
            * PRIVATE VARIABLES
            *********************************************************/
			//Strategy Settings:
			private Symbol _cashAsset;
			private Symbol _vixSymbol = QuantConnect.Symbol.Create("VIX", SecurityType.Base, Market.USA);
			private decimal _vix = 20m;
			private decimal _vixLowerBound = 10m;
			private decimal _vixUpperBound = 40m;
			private int _rebalancePeriod = 4;
			private decimal _cashTolerance = 0.01m;
			private decimal _minimumDeployedCapital = -0.25m;

			//Working Variables:
			private DateTime _lastRebalance = new DateTime(2004, 1, 2);
			private decimal _activePortfolioFraction = 0.3333m;
			private decimal _deployedCapital = 1m;
			private QCUQuantFramework _algorithm;
			private List<Symbol> _assets = new List<Symbol>();
			private decimal _safeCapital = 0m;
			private decimal _adjustLeverageToOne = 0.5m;
			private Dictionary<Symbol, decimal> _historicalPrices = new Dictionary<Symbol, decimal>();
			private Dictionary<Symbol, decimal> _activeFractionsBySymbol = new Dictionary<Symbol, decimal>();
			private Dictionary<Symbol, decimal> _relativePrices = new Dictionary<Symbol, decimal>();

			/******************************************************** 
            * PUBLIC PROPERTIES
            *********************************************************/

			/******************************************************** 
            * PUBLIC CONSTRUCTOR
            *********************************************************/
			/// <summary>
			/// Initialize the Alpha Manager:
			/// </summary>
			/// <param name="algorithm">Algorithm instance</param> 
			public ModuleAlpha(QCUQuantFramework algorithm) {
				this._algorithm = algorithm;
				_cashAsset = _algorithm.CashAsset;

				_activePortfolioFraction = 1m;
			}

			public void UpdateAssets(List<Symbol> assets) {
				this._assets = assets;

				if (assets.Count > 0) {
					_activePortfolioFraction = 1m / ((decimal)assets.Count);
					//Remove the cash asset from the active portfolio.
					_assets.Remove(_cashAsset);
				}

				//Find default fraction of assets
				foreach (var symbol in _assets) {
					if (!_activeFractionsBySymbol.ContainsKey(symbol)) {
						_activeFractionsBySymbol.Add(symbol, _activePortfolioFraction);
						_relativePrices.Add(symbol, 1);
					}
				}
			}

			/******************************************************** 
            * PUBLIC METHODS
            *********************************************************/
			/// <summary>
			/// Generate the Alpha Signal. Create a Symbol with a Strength of Conviction Indicator:
			/// </summary>
			/// <param name="prices">Latest prices data</param>
			/// <returns>List of commands to trade</returns>
			public Dictionary<Symbol, PortfolioTarget> Scan(TradeBars prices, List<Symbol> universe) {
				var targets = new Dictionary<Symbol, PortfolioTarget>();

				if (!prices.ContainsKey(_vixSymbol)) return targets;

				try {
					if (_algorithm.Time > _lastRebalance.Date.AddDays(_rebalancePeriod)) {

						_vix = prices[_vixSymbol].Close;
						_lastRebalance = _algorithm.Time;

						//Scale VIX fractionally 0-1 for 10-30.
						_deployedCapital = 1 - ((_vix - _vixLowerBound) / (_vixUpperBound - _vixLowerBound));

						//Set minimum deployed (set min to negative to allow shorts)
						if (_deployedCapital < _minimumDeployedCapital) _deployedCapital = _minimumDeployedCapital;

						//Fraction of capital preserved for bonds:
						_safeCapital = 1 - _deployedCapital - _cashTolerance;
						targets.Add(_cashAsset, new PortfolioTarget(_cashAsset, _safeCapital * _adjustLeverageToOne));

						//Use rotational logic to reduce allocation to poorly performing stocks:
						foreach (Symbol symbol in prices.Keys) {
							var price = prices[symbol].Close;
							//Find the relative prices of each stock sinc rebalance. e.g. 0.97, 1.03, 0.80
							if (!_historicalPrices.ContainsKey(symbol)) _historicalPrices.Add(symbol, price);
							_relativePrices[symbol] = (price / _historicalPrices[symbol]);
						}

						// Baseline of all asset performance
						var sum = _relativePrices.Values.Sum();

						foreach (Symbol symbol in _assets) {
							//HACK: this is quite dangerous to leave a asset when you don't have price
							// to make this work quickly I am going with this approach.

							if (!prices.ContainsKey(symbol)) continue;
							if (sum > 0) {
								_activeFractionsBySymbol[symbol] = (_relativePrices[symbol] / sum);
							} else {
								_activeFractionsBySymbol[symbol] = 0;
							}

							if (symbol != _cashAsset) {
								targets.Add(symbol, new PortfolioTarget(symbol, _deployedCapital * _activeFractionsBySymbol[symbol] * _adjustLeverageToOne));
							}
							//Save to calculate the rotational fraction.
							_historicalPrices[symbol] = prices[symbol].Close;
						}
					}
				} catch (Exception err) {
					_algorithm.Error("AlphaModule.Scan: Error -" + err.Message + err.ToString());
				}
				return targets;
			}
		}

	} // End of QCU QuantFramework

} // End of QuantConnect Namespace
using System;
using System.Collections.Generic;
using QuantConnect.Algorithm;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Data.Market;

namespace QuantConnect {
	/// <summary>
	/// QuantConnect QuantFramework Algorithm
	///
	///     Asset/Universe Selection Module: 
	///
	/// </summary>
	public partial class QCUQuantFramework : QCAlgorithm {
		/// <summary>
		/// Asset Screening Module:
		/// </summary>
		public partial class ModuleAssets {

			private decimal emaPeriod = 10m;
			/******************************************************** 
            * PRIVATE VARIABLES
            *********************************************************/
			//Working Variables:
			private QCUQuantFramework _algorithm;
			private Dictionary<Symbol, Asset> _assets;
			private int _daysAnalysed;
			private List<Symbol> _universe;

			/******************************************************** 
            * PUBLIC PROPERTIES
            *********************************************************/
			/// <summary>
			/// Public access to the asset properties:
			/// </summary>
			public Dictionary<Symbol, Asset> Assets {
				get {
					return _assets;
				}
			}

			/******************************************************** 
            * PUBLIC CONSTRUCTOR
            *********************************************************/
			/// <summary>
			/// Initialize the Asset Manager:
			/// </summary>
			/// <param name="algorithm">Instance of the algorithm required</param>
			public ModuleAssets(QCUQuantFramework algorithm) {
				_daysAnalysed = 0;
				_algorithm = algorithm;
				_universe = new List<Symbol>();
				_assets = new Dictionary<Symbol, Asset>();

				// subscriptions added via universe selection will have this resolution
				_algorithm.UniverseSettings.Resolution = Resolution.Daily;

				// force securities to remain in the universe for a minimm of 7 hours
				_algorithm.UniverseSettings.MinimumTimeInUniverse = TimeSpan.FromHours(7);

				// add universe for the 90th dollar volume percentile
				//_algorithm.AddUniverse(_algorithm.Universe.DollarVolume.Percentile(90));

				_algorithm.AddUniverse(_algorithm.Universe.DollarVolume.Top(10));

				// special case cash asset
				_algorithm.AddEquity(_algorithm.CashAsset.ToString());
			}

			public void OnSecuritiesChanged(SecurityChanges changes) {
				// liquidate securities that fell out of our universe
				foreach (var security in changes.RemovedSecurities) {
					if (_assets.ContainsKey(security.Symbol)) {
						_assets.Remove(security.Symbol);
					}
				}

				// invest in securities just added to our universe
				foreach (var security in changes.AddedSecurities) {
					if (!_assets.ContainsKey(security.Symbol)) {
						_assets.Add(security.Symbol, new Asset(security.Symbol, Industry.All, 0, 0));
					}
				}
			}



			/// <summary>
			/// At the start of end of each trading day, select the stock universe for next day:
			/// </summary>
			/// <returns></returns>
			public List<Symbol> UpdateUniverse() {
				_universe.Clear();
				try {
					//Perform any math / filtering / data search required to select the algorithm symbols for this next period.
					foreach (var symbol in _assets.Keys) {
						_universe.Add(symbol);
					}
				} catch (Exception err) {
					_algorithm.Error("AssetModule.ScreenUniverse(): Error - " + err.Message);
				}
				return _universe;
			}


			/// <summary>
			/// Update the asset properties where possible
			/// </summary>
			/// <param name="symbol">Symbol of the asset we're setting.</param>
			/// <param name="volume"></param>
			public void UpdateAssetProperties(Symbol symbol, TradeBar tradeBar) {
				if (_assets.ContainsKey(symbol)) {
					Asset asset = _assets[symbol];

					if (asset.Price == 0) asset.Price = tradeBar.Close;
					if (asset.Volume == 0) asset.Volume = tradeBar.Volume;

					decimal multiplier = 1 / emaPeriod;
					//E10 Exponential moving average prices:
					asset.Price = multiplier * tradeBar.Close + (1 - multiplier) * asset.Price;
					asset.Volume = multiplier * tradeBar.Volume + (1 - multiplier) * asset.Volume;

					// Update the end of day count of days counted:
					_daysAnalysed++;
				}
			}

		}

	} // End of QCU QuantFramework

} // End of QuantConnect Namespace
using System;
using System.Collections.Generic;
using MathNet.Numerics;
using MathNet.Numerics.Statistics;
using QuantConnect.Algorithm;
using QuantConnect.Data.Market;
using System.Linq;

namespace QuantConnect {
	/// <summary>
	/// QuantConnect QuantFramework Algorithm
	///
	///     Execution Management Module: 
	///
	/// </summary>
	public partial class QCUQuantFramework : QCAlgorithm {
		/// <summary>
		/// Trading Execution Module: with two execution style out of the box:
		/// -> ImmediateExecution - Send to market now.
		/// -> StandardDeviation - Send to market later.
		/// </summary>
		public class ModuleExecute {
			/******************************************************** 
            * PRIVATE VARIABLES
            *********************************************************/
			private QCUQuantFramework _algorithm;
			private Dictionary<Symbol, decimal> _target;
			private ExecutionTechnique _technique;
			private TradeBars _prices;

			//Standard deviation strategy variable:
			private int _devWindowPeriod = 60;
			private double _buyPoint = -2;
			private double _sellPoint = 2;
			private double _extremePoint = 3.6;

			//Standard deviation working varibles
			private Dictionary<Symbol, RunningStatistics> _deviationsStatistics;
			private Dictionary<Symbol, double> _deviations;
			private Dictionary<Symbol, FixedLengthQueue<double>> _priceQueue;
			private int _devSampleCount = 0;

			/******************************************************** 
            * PUBLIC PROPERTIES
            *********************************************************/

			/******************************************************** 
            * PUBLIC CONSTRUCTOR
            *********************************************************/
			/// <summary>
			/// Initialize the Execution Manager: 
			/// </summary>
			/// <param name="algorithm">Algorithm instance</param>
			public ModuleExecute(QCUQuantFramework algorithm, ExecutionTechnique technique = ExecutionTechnique.Immediate) {
				//Common Execution Parameters
				this._algorithm = algorithm;
				this._target = new Dictionary<Symbol, decimal>();
				this._technique = technique;

				//StdDev Working Parameters
				this._deviations = new Dictionary<Symbol, double>();
				this._deviationsStatistics = new Dictionary<Symbol, RunningStatistics>();
				this._priceQueue = new Dictionary<Symbol, FixedLengthQueue<double>>();
			}

			/******************************************************** 
            * PUBLIC METHODS
            *********************************************************/
			/// <summary>
			/// Set the target quantity for a symbol. Let the risk manager processing get us to this target:
			/// </summary>
			/// <param name="symbol">Desired asset</param>
			/// <param name="quantity">Desired quantity</param>
			public void SetPortfolioTarget(Dictionary<Symbol, PortfolioTarget> targets) {
				try {
					foreach (var symbol in targets.Keys) {
						if (!_target.ContainsKey(symbol)) {
							_target.Add(symbol, targets[symbol].Signal);
						} else {
							_target[symbol] = targets[symbol].Signal;
						}
					}
				} catch (Exception err) {
					_algorithm.Error("ModuleExecute.SetPortfolioTarget(): " + err.Message);
				}
			}

			/// <summary>
			/// Manage the execution of the algorithm delta of desired -> actual portfolio holdings:
			/// </summary>
			public void Execute(TradeBars prices) {
				try {
					_prices = prices;

					switch (_technique) {
						//Send the order to market immediate:
						case ExecutionTechnique.Immediate:
							ExecuteImmediate();
							break;

						//Execute with at favourable standard deviations:
						// - Use online stdDev techinque to track prices, when significantly better than mean purchase.
						case ExecutionTechnique.StandardDeviation:
							ExecuteStandardDeviation();
							break;
					}
				} catch (Exception err) {
					_algorithm.Error("ModuleExecute.Analyse(): " + err.Message);
				}
			}


			/// <summary>
			/// Execute the trade immediately 
			/// </summary>
			private void ExecuteImmediate() {
				int orderId = 0;
				decimal deltaQuantity = 0;
				var delta = new Dictionary<string, decimal>();
				var remove = new List<string>();

				//Find the difference in number target to holdings:
				foreach (Symbol security in _target.Keys) {
					string symbol = security.ToString();
					decimal total = _algorithm.Portfolio.TotalHoldingsValue + _algorithm.Portfolio.Cash * _algorithm.Securities[symbol].Leverage;

					//2. Difference between our target % and our current holdings: (relative +- number).
					decimal deltaValue = (total * _target[symbol]) - _algorithm.Portfolio[symbol].HoldingsValue;

					//Potential divide by zero error for zero prices assets.
					if (Math.Abs(_algorithm.Securities[symbol].Price) > 0) {
						//3. Now rebalance the symbol requested:
						deltaQuantity = Math.Floor(deltaValue / _algorithm.Securities[symbol].Price);
					}

					//Determine if we need to place an order:
					if (Math.Abs(deltaQuantity) > 0) {
						delta.Add(symbol, deltaQuantity);
					} else {
						//Remove the targets which have 0-more stocks to fill.
						remove.Add(symbol);
					}
				}

				//If there are any decrease holdings order process them first:
				foreach (var symbol in delta.Keys) {
					deltaQuantity = delta[symbol];

					if (!IncreaseHoldings(symbol, delta[symbol])) {
						orderId = _algorithm.MarketOrder(symbol, (int)deltaQuantity, false, "Decrease: " + symbol + " " + deltaQuantity);

						if (orderId < 0) {
							//Error placing order: adjust execution...
							_algorithm.Error("DECREASE Order Error: " + orderId + " " + symbol + " Quantity:" + deltaQuantity);
						}
					}
				}

				//After processed the decrease of holdings, send the increase of holdings:
				foreach (var symbol in delta.Keys) {
					deltaQuantity = delta[symbol];

					if (IncreaseHoldings(symbol, delta[symbol])) {
						orderId = _algorithm.MarketOrder(symbol, (int)deltaQuantity, false, "Increase: " + symbol + " " + deltaQuantity);

						if (orderId < 0) {
							//Error placing order: adjust execution...
							_algorithm.Error("INCREASE Order Error: " + orderId + " " + symbol + " Quantity:" + deltaQuantity);
						}
					}
				}

				//Strip the stocks already filled:
				foreach (var symbol in remove) {
					_target.Remove(symbol);
				}
			}



			/// <summary>
			/// Using the supplied portfolio targets execute the trades when stddeviation is ideal.
			/// </summary>
			private void ExecuteStandardDeviation() {
				var badTick = false;
				decimal deltaQuantity = 0;
				var delta = new Dictionary<string, decimal>();
				var remove = new List<string>();
				var decreaseHoldings = false;

				//Update standard deviation queue:
				foreach (var kvp in _prices) {
					var symbol = kvp.Key;
					var price = Convert.ToDouble(kvp.Value.Close);

					if (!_priceQueue.ContainsKey(symbol)) {
						_priceQueue.Add(symbol, new FixedLengthQueue<double>(_devWindowPeriod));
					}
					//Enqueue new data:
					_priceQueue[symbol].Enqueue(price);
				}

				//Only do analysis once we have sufficient data:
				if (_devSampleCount < _devWindowPeriod) {
					_devSampleCount++; return;
				}

				//Calculate current deviations from mean:
				foreach (var kvp in _prices) {
					var symbol = kvp.Key;
					var price = Convert.ToDouble(kvp.Value.Close);
					if (!_deviations.ContainsKey(symbol)) {
						_deviations.Add(symbol, 0);
						_deviationsStatistics.Add(symbol, new RunningStatistics());
					}

					_deviationsStatistics[symbol] = new RunningStatistics(_priceQueue[symbol].ToList());

					//Update the standard deviation for this symbol: filter anything too extreme as fake tick.
					var deviation = (price - _deviationsStatistics[symbol].Mean) / _deviationsStatistics[symbol].StandardDeviation;
					if (Math.Abs(deviation) < _extremePoint) {
						_deviations[symbol] = deviation;
					} else {
						badTick = true;
					}
				}

				//Filter out bad ticks:
				if (badTick) return;

				//Find the difference in number target to holdings:
				foreach (string symbol in _target.Keys) {
					var total = _algorithm.Portfolio.TotalHoldingsValue + _algorithm.Portfolio.Cash * _algorithm.Securities[symbol].Leverage;
					var price = _algorithm.Securities[symbol].Price;

					//2. Difference between our target % and our current holdings: (relative +- number).
					decimal deltaValue = (total * _target[symbol]) - _algorithm.Portfolio[symbol].HoldingsValue;

					//Potential divide by zero error for zero prices assets.
					if (Math.Abs(_algorithm.Securities[symbol].Price) > 0) {
						//3. Now rebalance the symbol requested:
						deltaQuantity = Math.Floor(deltaValue / _algorithm.Securities[symbol].Price);
					}

					//Determine if we need to place an order: if transaction volume more than $500. $1 fee on 1 share @ $25 trade is silly.
					if (Math.Abs(deltaQuantity) > 0 && (price * Math.Abs(deltaQuantity) > 500)) {
						delta.Add(symbol, deltaQuantity);
						if (!IncreaseHoldings(symbol, deltaQuantity)) decreaseHoldings = true;
					} else {
						//Remove the targets which have 0-more stocks to fill.
						remove.Add(symbol);
					}
				}

				//If there are any decrease holdings order process them first:
				foreach (var symbol in delta.Keys) {
					deltaQuantity = delta[symbol];
					if (!IncreaseHoldings(symbol, deltaQuantity)) {
						if ((deltaQuantity > 0 && _deviations[symbol] < _buyPoint) || (deltaQuantity < 0 && _deviations[symbol] > _sellPoint)) {
							_algorithm.MarketOrder(symbol, (int)deltaQuantity, false, "Decrease: " + symbol + " " + deltaQuantity);
						}
					}
				}

				//If there are any decrease holdings commands outstanding, process them first; don't run increase holdings.
				if (!decreaseHoldings) {
					//After processed the decrease of holdings, send the increase of holdings:
					foreach (var symbol in delta.Keys) {
						deltaQuantity = delta[symbol];
						if (IncreaseHoldings(symbol, deltaQuantity)) {
							if ((deltaQuantity > 0 && _deviations[symbol] < _buyPoint) || (deltaQuantity < 0 && _deviations[symbol] > _sellPoint)) {
								_algorithm.MarketOrder(symbol, (int)deltaQuantity, false, "Increase: " + symbol + " " + deltaQuantity);
							}
						}
					}
				}
			}




			/// <summary>
			/// Return true if the order would increase the holdings (long/short) of the symbol.
			/// </summary>
			private bool IncreaseHoldings(string symbol, decimal deltaQuantity) {
				var increaseHoldings = false;

				if (_algorithm.Portfolio.ContainsKey(symbol)) {
					if ((_algorithm.Portfolio[symbol].IsLong && deltaQuantity > 0) || (_algorithm.Portfolio[symbol].IsShort && deltaQuantity < 0)) {
						increaseHoldings = true;
					}
					if (_algorithm.Portfolio[symbol].Quantity == 0) {
						increaseHoldings = true;
					}
				} else {
					_algorithm.Error("IncreaseHoldings(): Symbol not found in portfolio");
				}

				return increaseHoldings;
			}

		}

	} // End of RV Fund:

}
using System;
using System.Collections.Generic;
using QuantConnect.Algorithm;
using QuantConnect.Data.Market;

namespace QuantConnect {
	/// <summary>
	/// QuantConnect QuantFramework Algorithm
	///
	///     Exit Management Module: 
	///
	/// </summary>
	public partial class QCUQuantFramework : QCAlgorithm {
		/// <summary>
		/// Exit Management Module:
		/// </summary>
		public class ModuleExit {
			/******************************************************** 
            * PRIVATE VARIABLES
            *********************************************************/
			private QCUQuantFramework _algorithm;
			private ExitTechnique _technique;

			/******************************************************** 
            * PUBLIC PROPERTIES
            *********************************************************/

			/******************************************************** 
            * PUBLIC CONSTRUCTOR
            *********************************************************/
			/// <summary>
			/// Initialize the Exit Strategy Manager: 
			/// </summary>
			/// <param name="algorithm">Algorithm instance</param>
			public ModuleExit(QCUQuantFramework algorithm, ExitTechnique technique = ExitTechnique.Momentum) {
				this._algorithm = algorithm;
				this._technique = technique;
			}

			/******************************************************** 
            * PUBLIC METHODS
            *********************************************************/
			/// <summary>
			/// Scan the portfolio holdings for exit opportunities:
			/// </summary>
			public void Scan(TradeBars prices, Dictionary<Symbol, PortfolioTarget> targets) {

				try {
					//Based on set exit technique, scan and apply 
					switch (_technique) {
						//No exit system (portfolio algorithms)
						case ExitTechnique.None:
							break;
					}
				} catch (Exception err) {
					_algorithm.Error("ExitManager.Scan(): " + err.Message);
				}
			}
		}

	} // End of QCU QuantFramework

} // End of QuantConnect Namespace
using System;
using QuantConnect.Algorithm;

namespace QuantConnect {
	/// <summary>
	/// QuantConnect QuantFramework Algorithm
	///
	///     Notification Management Module: 
	///
	/// </summary>
	public partial class QCUQuantFramework : QCAlgorithm {
		/// <summary>
		/// Notification Module:
		/// </summary>
		public class ModuleNotify {
			/******************************************************** 
            * PRIVATE VARIABLES
            *********************************************************/
			private QCUQuantFramework _algorithm;
			private string _defaultToEmail = "";
			private string _defaultPhoneNumber = "";

			/******************************************************** 
            * PUBLIC PROPERTIES
            *********************************************************/


			/******************************************************** 
            * PUBLIC CONSTRUCTOR
            *********************************************************/
			/// <summary>
			/// Initialize the Notification Manager:
			/// </summary>
			/// <param name="algorithm">Algorithm instance</param>
			public ModuleNotify(QCUQuantFramework algorithm, string toEmail, string phoneNumber) {
				this._algorithm = algorithm;
				this._defaultToEmail = toEmail;
				this._defaultPhoneNumber = phoneNumber;
			}


			/******************************************************** 
            * PUBLIC METHODS
            *********************************************************/
			/// <summary>
			/// Send an email to the notification addresses
			/// </summary>
			/// <param name="message"></param>
			public void Send(string message, string toEmail = "", string ccEmail = "") {
				try {
					//Send Email
					if (toEmail == "") toEmail = _defaultToEmail;
				} catch (Exception err) {
					_algorithm.Error("ModuleNotify.Send(): " + err.Message);
				}
			}

			/// <summary>
			/// Send a SMS to this phone number
			/// </summary>
			/// <param name="phoneNumber"></param>
			public void SMS(string message, string phoneNumber = "") {
				try {
					//Send SMS
					if (phoneNumber == "") phoneNumber = _defaultPhoneNumber;
				} catch (Exception err) {
					_algorithm.Error("ModuleNotify.SMS(): " + err.Message);
				}
			}
		}

	} // End of QCU QuantFramework

} // End of QuantConnect Namespace
using System;
using System.Collections.Generic;
using QuantConnect.Algorithm;
using QuantConnect.Data.Market;

namespace QuantConnect {
	/// <summary>
	/// QuantConnect QuantFramework Algorithm
	///
	///     Risk Management Module: 
	///
	/// </summary>
	public partial class QCUQuantFramework : QCAlgorithm {
		/// <summary>
		/// Risk Management Module:
		/// </summary>
		public class ModuleRisk {
			/******************************************************** 
            * PRIVATE VARIABLES
            *********************************************************/
			private QCUQuantFramework _algorithm;

			/******************************************************** 
            * PUBLIC PROPERTIES
            *********************************************************/

			/******************************************************** 
            * PUBLIC CONSTRUCTOR
            *********************************************************/
			/// <summary>
			/// Initialize the Risk Manager:
			/// </summary>
			/// <param name="algorithm">Algorithm instance</param>
			public ModuleRisk(QCUQuantFramework algorithm) {
				this._algorithm = algorithm;
			}

			/******************************************************** 
            * PUBLIC METHODS
            *********************************************************/
			/// <summary>
			/// Analyse the list of directives, generate a quantity position size adjusting for market volatility
			/// </summary>
			/// <param name="directives">Directives to transfor.</param>
			public void Analyse(TradeBars prices, Dictionary<Symbol, PortfolioTarget> targets) {
				try {
					//Control the total exposure:
					//
					// NOP.
					//
				} catch (Exception err) {
					_algorithm.Error("RiskModule.Analyse(): " + err.Message);
				}
			}
		}

	} // End of QCU QuantFramework

} // End of QuantConnect Namespace
using System.Globalization;
using System.Collections.Concurrent;
using QuantConnect.Algorithm;
using QuantConnect.Data;
using System;

namespace QuantConnect {
	/// <summary>
	/// QuantConnect QuantFramework Algorithm
	///
	///     Initialization and Parameters: 
	///
	/// </summary>
	public partial class QCUQuantFramework : QCAlgorithm {
		/// <summary>
		/// Algorithm Parameters:
		/// </summary>
		public static class FundParameters {
			/// Total Assets Under Management:
			public static decimal TotalFundAssets = 250000;
			/// Maximum Allocation Per Algorithm
			public static decimal AlgorithmMaximumAllocation = 50000;
		}

		/// <summary>
		/// Strategy Risk Parameters:
		/// </summary>
		public static class RiskParameters {
			/// Any position we take, set the maximum allowable risk.
			public static decimal RiskPerTrade = 0.18m; // 15%

		}

		/// <summary>
		/// Universe Selection Criteria
		/// </summary>
		public static class UniverseSelection {
			//10 Days Analysis Before Filtering Universe:
			public static decimal MinimumAnalysisPeriod = 10;

			//Other ideal parameters if we had data:
			//public static decimal MinimumMarketCapitalization = 0; etc
		}

		/// <summary>
		/// Contact Settings for the Algorithm Notifier
		/// </summary>
		public static class Contacts {
			/// Primary Contact Email Addresses
			public static string ToEmail = "fameoflight@gmail.com";

			/// Primary SMS Notification
			public static string PhoneNumber = "415-355-4946";
		}

		/// <summary>
		/// Portfolio Target from a signal decision:
		/// </summary>
		public class PortfolioTarget {
			/// Symbol to Trade:
			public Symbol Symbol;

			/// Direction Signal: -1 to +1
			public decimal Signal;

			public PortfolioTarget(Symbol symbol, decimal signal = 1) {
				this.Symbol = symbol;
				this.Signal = signal;
			}
		}

		/// <summary>
		/// Asset industry categories:
		/// </summary>
		public enum Industry {
			All,
			Bonds,
			BasicMaterials,
			CapitalGoods,
			Consumer,
			Energy,
			Financial,
			Services,
			Transportation,
			Technology,
			Healthcare,
			RealEstate,
			Utilities
		}

		/// <summary>
		/// Property group of an asset - Symbol, Volume, Industry, PE.. etc. For expansion later:
		/// </summary>
		public class Asset {
			/// Symbol of this asset:
			public Symbol Symbol;
			/// Asset Industry Catgegory:
			public Industry Industry;
			///Volume of the asset in millions:
			public decimal Volume;
			/// 20 Day Average Closing Price of the Asset:
			public decimal Price;

			/// Initialise the Asset Property Group:
			public Asset(Symbol symbol, Industry industry, decimal price, decimal volume) {
				this.Symbol = symbol;
				this.Industry = industry;
				this.Volume = 0;
				this.Price = 0;
			}
		}

		/// <summary>
		/// Stoploss / exit technique to apply
		/// </summary>
		public enum ExitTechnique {
			/// No exit technique. Do not interfere.
			None,

			//Mebane Faber 10 Month Average Exit.
			Momentum,

			/// Exit immediately after achieving a prefixed gain 
			FixedGain,

			/// Use a rolling stoploss immediately after taking position.
			FixedRollingStoploss,

			/// Rolling stoploss which increases closing speed exponentially.
			ParabolicRollingStoploss,

			/// Sell 20% of holdings with each 0.1% return achieved. 
			FractionalProfitTaking
		}

		/// <summary>
		/// Determine execution technique for the algorithm:
		/// </summary>
		public enum ExecutionTechnique {
			/// Execute immediately, as fast as possible.
			Immediate,

			/// Volume weighted average price execution, wait for VWAP price or better before executing.
			VWAP,

			/// Wait for negative stddev before ordering (price favourable).
			StandardDeviation
		}



	} // End of RV Fund:


	/// <summary>
	/// Queue which automatically dequeues old data.
	/// </summary>
	public class FixedLengthQueue<T> : ConcurrentQueue<T> {
		public int Size { get; private set; }

		public FixedLengthQueue(int size) {
			Size = size;
		}

		public new void Enqueue(T obj) {
			base.Enqueue(obj);
			lock (this) {
				while (base.Count > Size) {
					T outObj;
					base.TryDequeue(out outObj);
				}
			}
		}
	}

	/// <summary>
	/// Custom imported data -- VIX indicator:
	/// </summary>
	public class VIX : BaseData {
		public decimal Open = 0;
		public decimal High = 0;
		public decimal Low = 0;
		public decimal Close = 0;

		public VIX() { this.Symbol = Symbol.Create("VIX", SecurityType.Base, Market.USA); }

		public override SubscriptionDataSource GetSource(SubscriptionDataConfig config, DateTime date, bool isLive) {
			return new SubscriptionDataSource("https://www.quandl.com/api/v1/datasets/YAHOO/INDEX_VIX.csv?trim_start=2000-01-01&trim_end=2016-10-27&sort_order=asc&exclude_headers=true", SubscriptionTransportMedium.RemoteFile);
		}
		public override BaseData Reader(SubscriptionDataConfig config, string line, DateTime date, bool isLive) {
			VIX fear = new VIX();
			//try
			//{
			//Date	Open	High	Low	Close	Volume	Adjusted Close
			//10/27/2014	17.24	17.87	16	16.04	0	16.04
			string[] data = line.Split(',');
			fear.Time = DateTime.ParseExact(data[0], "yyyy-MM-dd", CultureInfo.InvariantCulture);
			fear.Open = Convert.ToDecimal(data[1]); fear.High = Convert.ToDecimal(data[2]);
			fear.Low = Convert.ToDecimal(data[3]); fear.Close = Convert.ToDecimal(data[4]);
			fear.Value = fear.Close;
			//}
			//catch 
			//{ }
			return fear;
		}
	} // End of VIX

} // End of QuantConnect Namespace
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.CompilerServices;
using QuantConnect.Algorithm;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Indicators.CandlestickPatterns;

namespace QuantConnect {
	/// <summary>
	///
	///     QuantConnect University - Quant-Framework Implementation
	///
	///     Basic algorithm framework implementation to design a robust, thorough and 
	///     thoughtful algorithm which can meet the challenges of live trading
	///
	/// </summary>
	public partial class QCUQuantFramework : QCAlgorithm {

		//private Symbol _cashAsset = QuantConnect.Symbol.Create("AGG", SecurityType.Equity, Market.USA);
		private Symbol _cashAsset = QuantConnect.Symbol.Create("GOOG", SecurityType.Equity, Market.USA);


		public Symbol CashAsset {
			get {
				return _cashAsset;
			}
		}

		/******************************************************** 
        * PRIVATE VARIABLES
        *********************************************************/
		/// <summary>
		/// Prices of all Assets Stores Rolling Forward:
		/// </summary>
		private TradeBars _prices = new TradeBars();

		/// <summary>
		/// Universe of symbols for today:
		/// </summary>
		private List<Symbol> _universe = new List<Symbol>();

		/******************************************************** 
        * PUBLIC PROPERTIES
        *********************************************************/
		/// <summary>
		/// Module 1: Screen assets daily to match criteria; generate list of matching assets. 
		/// </summary>
		public ModuleAssets AssetManager;

		/// <summary>
		/// Module 2: Generate alpha / signals based on desired behaviour. Signals from -1 to +1.
		/// </summary>
		public ModuleAlpha AlphaManager;

		/// <summary>
		/// Module 3: Manage Net Portfolio Cash Risk to ensure maximum 1% Exposed.
		/// </summary>
		public ModuleRisk RiskManager;

		/// <summary>
		/// Module 4: Factoring in the signal strength, apply stop loss techniques to control the position exit.
		/// </summary>
		public ModuleExit ExitManager;

		/// <summary>
		/// Module 5: Given a Desired Portfolio; Execute trades to reach this portfolio in the optimial manner possible
		/// </summary>
		public ModuleExecute ExecutionManager;

		/// <summary>
		/// Module 6: Send instant email/SMS notifications on issuing trades.
		/// </summary>
		public ModuleNotify NotificationManager;

		/******************************************************** 
        * PUBLIC METHODS
        *********************************************************/
		/// <summary>
		/// Initialize algorithm and create instances of all the portfolio modules
		/// </summary>
		public override void Initialize() {
			SetWarmUp(TimeSpan.FromDays(45));

			//Backtest Range:
			// Make sure you check the start dates of the assets you trade.
			SetStartDate(2015, 1, 1);
			SetEndDate(DateTime.Now.Date.AddDays(-1));

			//Set Cash to $250k
			SetCash(FundParameters.AlgorithmMaximumAllocation);

			//Initalize Algorithm-A Modules:
			AssetManager = new ModuleAssets(this);

			// Analyse Generation of New Positions:
			AlphaManager = new ModuleAlpha(this);

			// Monitor the Risk Profile
			RiskManager = new ModuleRisk(this);

			// Analysis of Exit Positions:
			ExitManager = new ModuleExit(this);

			// Time and Split the Orders:
			ExecutionManager = new ModuleExecute(this, ExecutionTechnique.StandardDeviation);

			// Send Notifications of Positions:
			NotificationManager = new ModuleNotify(this, Contacts.ToEmail, Contacts.PhoneNumber);

			//Add custom data:
			AddData<VIX>("VIX", Resolution.Minute);
		}

		/// <summary>
		/// New Data Event: Process new data signal into the modules:
		/// </summary>
		/// <param name="data"></param>
		public void OnData(TradeBars bars) {
			//1. Initialize: only continue when prices completely full:
			if (!UpdatePrices(bars)) return;

			if (!this.IsWarmingUp) {
				// 2. Update the Modules:
				var targets = AlphaManager.Scan(_prices, _universe);

				if (targets.Count > 0) {
					Debug(string.Format("Alpha Generated {0} universe {1} price {2}", targets.Count, _universe.Count, _prices.Count));
				}

				// 3. Quantify directives into risk-adjusted positions:
				RiskManager.Analyse(_prices, targets);

				// 4. Before Sending to Execution Manager, Scan for Exit Signal:
				ExitManager.Scan(_prices, targets);

				// 5. Issue Quantified Directives to Execution Manager:
				ExecutionManager.SetPortfolioTarget(targets);

				// 6. Issue Trade Orders to Actually Create Portfolio
				ExecutionManager.Execute(_prices);
			}
		}

		/// <summary>
		/// New Data Event: VIX daily pricing: 
		/// </summary>
		public void OnData(VIX data) {
			TradeBar vixBar = new TradeBar();
			vixBar.Open = data.Open;
			vixBar.High = data.High;
			vixBar.Low = data.Low;
			vixBar.Close = data.Close;
			vixBar.Value = data.Value;
			vixBar.Time = data.Time;

			_prices[data.Symbol.ToString()] = vixBar;
		}


		public override void OnEndOfDay(Symbol symbol) {
			if (_prices.ContainsKey(symbol)) {
				AssetManager.UpdateAssetProperties(symbol, _prices[symbol.ToString()]);
			}
			_universe = AssetManager.UpdateUniverse();
		}

		/// <summary>
		/// Update the price store: 
		/// </summary>
		private bool UpdatePrices(TradeBars bars) {
			foreach (var bar in bars.Values) {
				// 1.1 Record the prices for future reference
				_prices[bar.Symbol.ToString()] = bar;
			}
			Debug(string.Format("Prices {0}", _prices.Count));
			//return (_prices.Count == Portfolio.Count);
			return _prices.Count > 0;
		}

		public override void OnSecuritiesChanged(SecurityChanges changes) {
			AssetManager.OnSecuritiesChanged(changes);
			_universe = AssetManager.UpdateUniverse();
			AlphaManager.UpdateAssets(_universe);

			List<Symbol> obsolteSymbols = new List<Symbol>();

			foreach (var symbol in _prices.Keys) {
				if (!_universe.Contains(symbol)) {
					obsolteSymbols.Add(symbol);
				}
			}

			foreach (var symbol in obsolteSymbols) {
				_prices.Remove(symbol);
			}
		}

	} // End of QCU QuantFramework

} // End of QuantConnect Namespace