Overall Statistics |
Total Orders 4099 Average Win 0.13% Average Loss -0.17% Compounding Annual Return -17.224% Drawdown 65.100% Expectancy -0.227 Start Equity 1000000 End Equity 388023.03 Net Profit -61.198% Sharpe Ratio -0.818 Sortino Ratio -0.842 Probabilistic Sharpe Ratio 0.000% Loss Rate 57% Win Rate 43% Profit-Loss Ratio 0.80 Alpha -0.138 Beta -0.204 Annual Standard Deviation 0.16 Annual Variance 0.026 Information Ratio -0.275 Tracking Error 0.347 Treynor Ratio 0.641 Total Fees $18477.56 Estimated Strategy Capacity $23000000.00 Lowest Capacity Asset SU R735QTJ8XC9X Portfolio Turnover 7.76% |
#region imports from AlgorithmImports import * from QuantConnect.Indicators import IchimokuKinkoHyo #endregion class IchimokuCloudCrossOverAlphaModel(AlphaModel): """ This class emits insights to hold a long (short) position after the chikou line of a security's Ichimoku Cloud crosses over (under) the top (bottom) of the cloud. """ _symbol_data_by_symbol = {} def update(self, algorithm, data): """ Called each time our alpha model receives a new data slice. Input: - algorithm Algorithm instance running the backtest - data A data structure for all of an algorithm's data at a single time step Returns a list of Insights to the portfolio construction model. """ insights = [] for symbol, symbol_data in self._symbol_data_by_symbol.items(): if not data.contains_key(symbol) or data[symbol] is None: continue # Update indicator with the latest TradeBar symbol_data.ichimoku.update(data[symbol]) # Determine insight direction current_location = symbol_data.get_location() if symbol_data.previous_location is not None: # Indicator is ready if symbol_data.previous_location != 1 and current_location == 1: symbol_data.direction = InsightDirection.UP if symbol_data.previous_location != -1 and current_location == -1: symbol_data.direction = InsightDirection.DOWN symbol_data.previous_location = current_location # Emit insight if symbol_data.direction: insight = Insight.price(symbol, timedelta(days=1), symbol_data.direction) insights.append(insight) return insights def on_securities_changed(self, algorithm, changes): """ Called each time our universe has changed. Input: - algorithm Algorithm instance running the backtest - changes The additions and subtractions to the algorithm's security subscriptions """ for security in changes.added_securities: symbol = security.symbol self._symbol_data_by_symbol[symbol] = SymbolData(symbol, algorithm) for security in changes.removed_securities: self._symbol_data_by_symbol.pop(security.symbol, None) class SymbolData: """ This class is used to store information on each security in the universe. It is responsible for initializing and warming up the Ichimoku indicator and determining the position of the chikou line in respect to the cloud. """ previous_location = None direction = None def __init__(self, symbol, algorithm): """ Input: - symbol Symbol of the security - algorithm Algorithm instance running the backtest """ # Create Ichimoku indicator self.ichimoku = IchimokuKinkoHyo() # Warm up indicator history = algorithm.history(symbol, self.ichimoku.warm_up_period + 1, Resolution.DAILY).loc[symbol] for idx, row in history.iterrows(): if self.ichimoku.is_ready: self.previous_location = self.get_location() tradebar = TradeBar(idx, symbol, row.open, row.high, row.low, row.close, row.volume) self.ichimoku.update(tradebar) def get_location(self): """ Determines the location of the chikou line in respect to the cloud. Returns an integer in the interval [-1, 1], representing the location. 1 => Above cloud; 0 => Inside cloud; -1 => Below cloud """ chikou = self.ichimoku.chikou.current.value senkou_span_a = self.ichimoku.senkou_a.current.value senkou_span_b = self.ichimoku.senkou_b.current.value cloud_top = max(senkou_span_a, senkou_span_b) cloud_bottom = min(senkou_span_a, senkou_span_b) if chikou > cloud_top: return 1 # Above cloud if chikou < cloud_bottom: return -1 # Below cloud return 0 # Inside cloud
#region imports from AlgorithmImports import * from alpha import IchimokuCloudCrossOverAlphaModel from universe import BigEnergyUniverseSelectionModel #endregion class VerticalQuantumAtmosphericScrubbers(QCAlgorithm): def initialize(self): self.set_start_date(2015, 8, 5) self.set_end_date(2020, 8, 5) self.set_cash(1000000) self.set_universe_selection(BigEnergyUniverseSelectionModel()) self.universe_settings.resolution = Resolution.DAILY self.set_alpha(IchimokuCloudCrossOverAlphaModel()) self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel()) self.set_execution(ImmediateExecutionModel()) self.set_benchmark("XLE")
#region imports from AlgorithmImports import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel #endregion class BigEnergyUniverseSelectionModel(FundamentalUniverseSelectionModel): """ This universe selection model contain the 10 largest securities in the energy sector. """ def __init__(self, fine_size=10): self._fine_size = fine_size self._month = -1 super().__init__(True) def select_coarse(self, algorithm, coarse): """ Coarse universe selection is called each day at midnight. Input: - algorithm Algorithm instance running the backtest - coarse List of CoarseFundamental objects Returns the symbols that have fundamental data. """ if algorithm.time.month == self._month: return Universe.UNCHANGED return [ x.symbol for x in coarse if x.has_fundamental_data ] def select_fine(self, algorithm, fine): """ Fine universe selection is performed each day at midnight after `SelectCoarse`. Input: - algorithm Algorithm instance running the backtest - fine List of FineFundamental objects that result from `SelectCoarse` processing Returns a list of symbols that are in the energy sector and have the largest market caps. """ self._month = algorithm.time.month energy_stocks = [ f for f in fine if f.asset_classification.morningstar_sector_code == MorningstarSectorCode.ENERGY ] sorted_by_market_cap = sorted(energy_stocks, key=lambda x: x.market_cap, reverse=True) return [ x.symbol for x in sorted_by_market_cap[:self._fine_size] ]