Created with Highcharts 12.1.2EquityJan 2024Feb 2024Mar 2024Apr 2024May 2024Jun 2024Jul 2024Aug 2024Sep 2024Oct 2024Nov 2024Dec 2024Jan 2025750k1,000k1,250k1,500k-10-50800k1,000k1,200k051002M4M02.5M5M
Overall Statistics
Total Orders
29091
Average Win
0.22%
Average Loss
-0.13%
Compounding Annual Return
28.734%
Drawdown
9.900%
Expectancy
0.069
Start Equity
1000000
End Equity
1281598.79
Net Profit
28.160%
Sharpe Ratio
1.149
Sortino Ratio
1.815
Probabilistic Sharpe Ratio
71.019%
Loss Rate
59%
Win Rate
41%
Profit-Loss Ratio
1.62
Alpha
0.156
Beta
-0.077
Annual Standard Deviation
0.126
Annual Variance
0.016
Information Ratio
0.019
Tracking Error
0.169
Treynor Ratio
-1.883
Total Fees
$90426.38
Estimated Strategy Capacity
$2500000.00
Lowest Capacity Asset
TCK TJVJKNII45T1
Portfolio Turnover
310.11%
# region imports
from AlgorithmImports import *
# endregion

class Test(QCAlgorithm):

    def initialize(self):
        self.set_start_date(2024, 1, 1)
        self.set_end_date(2024, 12, 31)
        self.set_cash(1_000_000)
        self.settings.automatic_indicator_warm_up = True
        self._selected = []

        # Set the parameters.
        self._universe_size = 1000
        self._indicator_period = 14 # days
        self._stop_loss_atr_distance = 0.5 # 0.1 => 10% of ATR
        self._stop_loss_risk_size = 0.01 # 0.01 => Lose 1% of the portfolio if stop loss is hit
        self._max_positions = 15
        self._opening_range_minutes = 5
        self._leverage = 3
        # Set timezone to Eastern Time
        self.SetTimeZone("America/New_York")
        #Add three attributes
        self.previous_portfolio_value = 1000000
        self.drawdown_threshold = 0.05  # 1%
        self.can_trade = True

        self.set_security_initializer(CustomSecurityInitializer(self.brokerage_model, FuncSecuritySeeder(self.get_last_known_prices)))

        # Add SPY so there is at least 1 asset at minute resolution to step the algorithm along.
        self._spy = self.add_equity('SPY').symbol 

        self.universe_settings.resolution = Resolution.DAILY
        self.universe_settings.schedule.on(self.date_rules.month_start(self._spy))
        
        self._universe = self.add_universe(
            lambda fundamentals: [
                f.symbol 
                for f in sorted(
                    [
                        f for f in fundamentals 
                        if f.price > 5  # price > 5
                        and f.symbol != self._spy
                    ], 
                    key=lambda f: f.dollar_volume
                )[-self._universe_size:]
            ]
        )
            
        # run 5 min after the market open
        self.schedule.on(
            self.date_rules.every_day(self._spy), 
            self.time_rules.after_market_open(self._spy, self._opening_range_minutes), 
            self._scan_for_entries
        )  # Scheduled entry scan after market open.

        # exit 1 min before market close
        self.schedule.on(
            self.date_rules.every_day(self._spy), 
            self.time_rules.before_market_close(self._spy, 1), 
            self._exit
        )

        self.set_warm_up(timedelta(2*self._indicator_period))

        # Set Benchmark
        self.SetBenchmark("SPY")

        # Variable to hold the last calculated benchmark value
        self.lastBenchmarkValue = None
        

        # Our inital benchmark value scaled to match our portfolio
        # dont know why the inital value of SP 500 is 1047215.721 at 2024/1/1, I scale back by just deducting a constant, still have some minor gap but should be negligible in the long term
        # need to adjust for the constant depends on the initial gap
        self.BenchmarkPerformance = self.Portfolio.TotalPortfolioValue - 47000


    def on_securities_changed(self, changes):
        for security in changes.added_securities:
            security.atr = self.atr(security.symbol, self._indicator_period, resolution=Resolution.DAILY)
            security.volume_sma = SimpleMovingAverage(self._indicator_period)
        
    def _scan_for_entries(self):
        symbols = list(self._universe.selected)
        equities = [self.securities[symbol] for symbol in symbols]
        history = self.history(symbols, 5, Resolution.MINUTE)
        volume_sum = history.volume.unstack(0).sum()
        
        equities = [equity for equity in equities if equity.symbol in volume_sum]
        for equity in equities:
            volume = volume_sum.loc[equity.symbol]
            equity.relative_volume = volume / equity.volume_sma.current.value if equity.volume_sma.is_ready else None
            equity.volume_sma.update(self.time, volume)
            # self.log(str(equity.symbol)+" "+str(equity.atr.current.value)+" "+str(equity.volume_sma.current.value))
        if self.is_warming_up:
            return
        
        # Filter 1: ATR > 0.5
        equities = [equity for equity in equities if equity.atr.is_ready and equity.atr.current.value > 0.5]
        if not equities:
            return

        #filter for volume (removed)
        #equities = [equity for equity in equities if equity.volume_sma.is_ready and equity.volume_sma.current.value > 1_000_000]
        #if not equities:
        #    return
        
        # Filter 2: Select assets with Relative Volume > 100%
        equities = [equity for equity in equities if equity.relative_volume and equity.relative_volume > 1]
        if not equities:
            return


        # Filter 3: Select the top 20 assets with the greatest Relative Volume.
        equities = sorted(equities, key=lambda equity: equity.relative_volume)[-self._max_positions:]
        
        history = history.loc[[equity.symbol for equity in equities]]
        open_by_symbol = history.open.unstack(0).iloc[0]
        close_by_symbol = history.close.unstack(0).iloc[-1]
        high_by_symbol = history.high.unstack(0).max()
        low_by_symbol = history.low.unstack(0).min()

        # Create orders for the target assets.
        # Calculate position sizes so that if you fill an order at the high (low) of the first 5-minute bar 
        # and hit a stop loss based on 10% of the ATR, you only lose x% of portfolio value.    
        orders = []
        
        for symbol in close_by_symbol[close_by_symbol > open_by_symbol].index:
            equity = self.securities[symbol]
            orders.append({
                'equity': equity, 
                'entry_price': high_by_symbol.loc[equity.symbol], 
                'stop_price': high_by_symbol.loc[equity.symbol] - self._stop_loss_atr_distance * equity.atr.current.value  # stop price
            })


        for symbol in close_by_symbol[close_by_symbol < open_by_symbol].index:
            equity = self.securities[symbol]
            orders.append({
                'equity': equity, 
                'entry_price': low_by_symbol.loc[equity.symbol], 
                'stop_price': low_by_symbol.loc[equity.symbol] + self._stop_loss_atr_distance * equity.atr.current.value
            })

        for order in orders:
            equity = order['equity']
            self._selected.append(equity)
            self._create_empty_order_tickets(equity)
            self.add_security(equity.symbol, leverage=self._leverage)
            quantity = int((self._stop_loss_risk_size * self.portfolio.total_portfolio_value) / (order['entry_price'] - order['stop_price']))
            quantity_limit = self.calculate_order_quantity(equity.symbol, 3/self._max_positions)
            quantity = min(abs(quantity), quantity_limit) * np.sign(quantity)
            if quantity:
                equity.stop_loss_price = order['stop_price']
                equity.entry_ticket = self.stop_market_order(equity.symbol, quantity, order['entry_price'], tag='Entry')

    def on_data(self, data):
        current_time = self.Time

        # At market close (4:00 PM ET), save the portfolio value for drawdown calculation
        if current_time.hour == 16 and current_time.minute == 0:
            self.previous_portfolio_value = self.Portfolio.TotalPortfolioValue
            self.can_trade = True  # Reset trading status for the next day

        # Calculate real-time drawdown during the trading day
        if self.previous_portfolio_value > 0:
            # Calculate drawdown as a percentage of the previous day's portfolio value
            drawdown = (self.previous_portfolio_value - self.Portfolio.TotalPortfolioValue) / self.previous_portfolio_value

            # If drawdown exceeds the threshold, stop trading and liquidate positions
            if drawdown < -self.drawdown_threshold:  # Negative drawdown
                self._exit()  # Liquidate all positions
                self.can_trade = False  # Disable further trading
                self.Debug("Exiting all positions due to daily drawdown exceeding 5%.")
                return  # Skip further processing
        # Get the current close price for the benchmark (SPY)

        self._update_stop_loss()

        benchmark = self.Securities["SPY"].Close
  
        # If we had a previous close, update our benchmark performance.
        if self.lastBenchmarkValue is not None and self.lastBenchmarkValue != 0:
            self.BenchmarkPerformance = self.BenchmarkPerformance * (benchmark / self.lastBenchmarkValue)
  
        # Save the current close price for the next update
        self.lastBenchmarkValue = benchmark

        
        self.Plot("Strategy vs Benchmark", "Portfolio Value", self.Portfolio.TotalPortfolioValue)
        self.Plot("Strategy vs Benchmark", "Benchmark", self.BenchmarkPerformance)



    def _update_stop_loss(self):
        # Only update stop loss for securities currently in the portfolio
        open_positions = [equity for equity in self._selected if equity.symbol in self.Portfolio and self.Portfolio[equity.symbol].Invested]

        if not open_positions:
            return

        # Update stop loss dynamically based on the last 60-minute high
        symbols = [equity.symbol for equity in open_positions]
        history = self.history(symbols, 60, Resolution.MINUTE)  # Fetch 60-minute data
        high_by_symbol_60min = history.high.unstack(0).max()  # High of the last 60 minutes
        low_by_symbol_60min = history.low.unstack(0).min()

        for equity in open_positions:

            # Only update the stop loss if the new stop loss is higher (for long positions)
            if self.Portfolio[equity.symbol].Quantity > 0:
               # Calculate the new stop loss based on the latest 60-minute high
                new_stop_loss = high_by_symbol_60min.loc[equity.symbol] - self._stop_loss_atr_distance * equity.atr.current.value
                if new_stop_loss > equity.stop_loss_price:

                    # Cancel the existing stop loss order
                    if equity.stop_loss_ticket is not None:
                        equity.stop_loss_ticket.Cancel()

                    # Submit a new stop loss order
                    quantity = self.Portfolio[equity.symbol].Quantity
                    equity.stop_loss_ticket = self.StopMarketOrder(equity.symbol, -quantity, new_stop_loss, tag='ATR Stop')

                    # Update the stored stop loss price
                    equity.stop_loss_price = new_stop_loss

            # For short positions, stop loss would be lower
            elif self.Portfolio[equity.symbol].Quantity < 0:
                # Calculate the new stop loss based on the latest 60-minute low
                new_stop_loss = low_by_symbol_60min.loc[equity.symbol] + self._stop_loss_atr_distance * equity.atr.current.value
                if new_stop_loss < equity.stop_loss_price:
                    # Cancel the existing stop loss order
                    if equity.stop_loss_ticket is not None:
                        equity.stop_loss_ticket.Cancel()

                    # Submit a new stop loss order
                    quantity = self.Portfolio[equity.symbol].Quantity
                    equity.stop_loss_ticket = self.StopMarketOrder(equity.symbol, -quantity, new_stop_loss, tag='ATR Stop')

                    # Update the stored stop loss price
                    equity.stop_loss_price = new_stop_loss
    
    def on_order_event(self, order_event: OrderEvent) -> None:
        if order_event.status != OrderStatus.FILLED:
            return
        security = self.securities[order_event.symbol]
        # When the entry order is hit, place the exit order: Stop loss based on ATR.
        if order_event.ticket == security.entry_ticket:
            security.stop_loss_ticket = self.stop_market_order(order_event.symbol, -security.entry_ticket.quantity, security.stop_loss_price, tag='ATR Stop')
        # When the stop loss order is hit, cancel the MOC order.
        elif order_event.ticket == security.stop_loss_ticket:
            self._create_empty_order_tickets(security)

    # Create some members on the Equity object to store each order ticket.
    def _create_empty_order_tickets(self, equity):
        equity.entry_ticket = None
        equity.stop_loss_ticket = None

    # Liquidate the portfolio, remove order tickets, remove the minute-resolution data subscriptions.
    def _exit(self):
        self.liquidate()
        for equity in self._selected:
            self._create_empty_order_tickets(equity)
            self.remove_security(equity.symbol)
        self._selected = []
    

class CustomSlippageModel:
    def get_slippage_approximation(self, asset: Security, order: Order):
        # We set a maximum 0.05% slippage that is linearly linked to the ratio of the order size versus the previous bar's volume.
        #return asset.price * 0.0005
        return asset.price * 0.0005 * min(1, order.absolute_quantity / asset.volume)
    
    
class CustomSecurityInitializer(BrokerageModelSecurityInitializer):
    def __init__(self, brokerage_model, security_seeder):
        super().__init__(brokerage_model, security_seeder)
    def initialize(self, security):
        super().initialize(security)
        # To set the slippage model to the custom one for all stocks entering the universe.
        security.set_slippage_model(CustomSlippageModel())